Выпадение средней части хромосомы. Хромосомные аберрации. Лейкоз и потеря Y-хромосомы

Хромосомные аберрации. Под хромосомными аберрациями понимают изменения структуры хромосом, вызванные их разрывами, с последующим перераспределением, утратой или удвоением генетического материала. Они отражают различные виды аномалий хромосом. У человека среди наиболее часто встречающихся хромосомных аберраций, проявляющихся развитием глубокой патологии, выделяют аномалии, касающиеся числа и структуры хромосом. Нарушения числа хромосом могут быть выражены отсутствием одной из пары гомологичных хромосом (моносомия) или появлением добавочной, третьей, хромосомы (трисомия). Общее количество хромосом в кариотипе в этих случаях отличается от модального числа и равняется 45 или 47. Полиплоидия и анеуплоидия имеют меньшее значение для развития хромосомных синдромов. К нарушениям структуры хромосом при общем нормальном их числе в кариотипе относят различные типы их «поломки»: транслокацию (обмен сегментами между двумя негомологичными хромосомами), делецию (выпадение части хромосомы), фрагментацию, кольцевые хромосомы и т. д.

Хромосомные аберрации, нарушая баланс наследственных факторов, являются причиной многообразных отклонений в строении и жизнедеятельности организма, проявляющихся в так называемых хромосомных болезнях.

Хромосомные болезни. Их делят на связанные с аномалиями соматических хромосом (аутосом) и с аномалиями половых хромосом (телец Барра). При этом учитывают характер хромосомной аномалии - нарушение числа отдельных хромосом, числа хромосомного набора или структуры хромосом. Эти критерии позволяют выделять полные или мозаичные клинические формы хромосомных болезней.

Хромосомные болезни, обусловленные нарушениями числа отдельных хромосом (трисомиями и моносомиями), могут касаться как аутосом, так и половых хромосом.

Моносомии аутосом (любые хромосомы, кроме Х- и Y-хромосом) несовместимы с жизнью. Трисомии аутосом достаточно распространены в патологии человека. Наиболее часто они представлены синдромами Патау (13-я пара хромосом) и Эдвардса (18-я пара), а также болезнью Дауна (21-я пара). Хромосомные синдромы при трисомиях других пар аутосом встречаются значительно реже. Моносомия половой Х-хромосомы (генотип ХО) лежит в основе синдрома Шерешевского-Тернера, трисомия половых хромосом (генотип XXY) - в основе синдрома Клейнфелтера. Нарушения числа хромосом в виде тетра- или триплоидии могут быть представлены как полными, так и мозаичными формами хромосомных болезней.

Нарушения структуры хромосом дают самую большую группу хромосомных синдромов (более 700 типов), которые, однако, могут быть связаны не только с хромосомными аномалиями, но и с другими этиологическими факторами.

Для всех форм хромосомных болезней характерна множественность проявлений в виде врожденных пороков развития, причем их формирование начинается на стадии гистогенеза и продолжается в органогенезе, что объясняет сходство клинических проявлений при различных формах хромосомных болезней.

Выделяют несколько причин нарушений генетической программы клетки.

К изменениям биохимической структуры генов относят точечные мутации с выпадением какого-либо из нуклеотидов, приводящие к дисфункции программирования генетической информации; выпадение части хромосомы; полимеризацию с образованием дополнительных участков хромосом. Может отсутствовать или появиться одна или несколько новых хромосом.

Активация патологических генов может быть связана со структурными изменениями в генах-регуляторах, с активацией летальных генов при гомозиготности по аутосомно-рецессивным генам или проявлении патогенных генов, связанных с полом. Кроме того, проявление патогенного аутосомно-рецессивного признака может быть связано с другим геном (сцепленные гены и признаки).

Репрессия (подавление) «жизненно важных генов» обусловлена вышеперечисленными причинами.

Внедрение в геном фрагмента чужеродной ДНК с патогенными свойствами , например вируса, может привести к гибели клетки или персистенции вируса внутри нее. Данная персистенция нередко приводит к возникновению злокачественного опухолевого роста. В условиях эксперимента исследователи в клетку вводят как патологические, так и недостающие гены (генная инженерия).

Все перечисленные нарушения генома могут передаваться по наследству, если они возникли в половых клетках, либо вести к соматическим изменениям в организме животного без передачи по наследству (геном изменен в соматических клетках).

Генетический материал может быть изменен столь грубо, что это становится хорошо заметным даже при изучении хромосом с помощью световой микроскопии во время деления. Это так называемые геномные и хромосомные мутации.

Геномные мутации ведут к грубому изменению структуры ядерного наследственного материала в целом. Сопровождаются изменением числа и формы хромосом, соотношением их содержания в различных клетках. Нередко геномные мутации характеризует анэуплоидия, гетероплоидия или полиплоидия, что часто наблюдают в злокачественных опухолевых клетках при нарушении митоза (при редуцированном митозе). Геномная мутация может быть обусловлена тем, что одна из хромосом представлена не двумя, как обычно в соматической клетке, а тремя и более копиями. Пример такой мутации - синдром Дауна. Синдром Дауна у человека вызван транслокацией (присоединением) 21 хромосомы в 14 или 22 с образованием ее дополнительной копии.

Хромосомные мутации возникают при изменении структуры отдельных хромосом, увеличении или уменьшении размеров плеч, транслокации участка одной хромосомы на другую, поворотом участка хромосомы на 180°. Нехватка одного из участков хромосомы называется делецией. Выпадение значительных участков хромосомы обычно ведет к гибели организма. Удвоение части хромосомы - дупликация. Переворот участка хромосомы на 180° обозначают как инверсию и фенотипически она может не проявляться. Обмен участками между негомологичными хромосомами - транслокация - обычно ведет к нарушениям развития организма, несовместимым с жизнью.

Генная, или точечная, мутация - это замена отдельных нуклеотидов или небольших участков генома в пределах одного гена. Генная мутация незаметна при гистологическом исследовании, но изменяет фенотип клетки, что ведет к формированию в клетке и/или в организме в целом новых признаков.

Выделяют конформационные мутации, когда происходит замена одного нуклеотида другим с изменением двойной спирали ДНК.

Иногда мутация не приводит к изменению информации, хранимой геномом. Такое изменение генома называют молчащей мутацией. Если мутация вызывает искажение информации, хранимой геномом, го ее называют мутацией, искажающей биологический смысл наследственной информации. Это приводит к образованию ферментов с измененной активностью, обеспечивает новые признаки, необычные для клетки и целого организма.

Под мутацией, не имеющей смысла, понимают генную мутацию, которая так изменяет структуру гена, что считывание с него информации становится невозможным, либо образуется последовательность иРНК, которая не может транслироваться рибосомой.

Трансзиционная мутация заключается в замене пуринов (аденин на гуанин или наоборот) или пиримидинов. Трансверзионная мутация - это замена пурина на пиримидин или наоборот.

Мутагены - это факторы любой природы, изменяющие структуру генома и вызывающие мутации. Выделяют эндогенные и экзогенные мутагены. Это могут быть воздействия физической природы (ионизирующая радиация, ультрафиолетовое излучение, травмы, повышенная температура). Химическими мутагенами являются некоторые пестициды, промышленные яды (бензол, бензопирен, эпоксиды, некоторые альдегиды), ртутные соединения, цитостатики. Мутагенное действие оказывают некоторые пищевые добавки (цикламаты, ароматические углеводы), пероксидные соединения липидов, свободные кислородные радикалы, содержащиеся в пероксиде водорода и озоне.

В результате мутаций возникают генетические заболевания.

1. Заболевания, полностью вызванные влиянием патологического гена. Эти нарушения проявляются всегда вне зависимости от особенностей, предшествующих жизнедеятельности клеток и организма в целом. Обычно проявления, вызванные такими мутациями, можно наблюдать уже с момента рождения животного или человека. С возрастом степень повреждений может усиливаться или находиться в малодинамичном (стационарном) состоянии. Однако имеется ряд мутаций, которые могут проявляться и в позднем возрасте (некоторые миопатии, хорея Гентингтона).

2. Болезни, при которых генетический фактор проявляется лишь при наличии соответствующих условий окружающей среды и особенностей индивидуального развития. Так, склонность к сахарному диабету может проявиться в зависимости от особенностей питания. Этот вид наследственных заболеваний практически всегда выявляют после рождения, иногда в пожилом и старческом возрасте.

3. Заболевания, при которых наследственность является ведущим причинным фактором. Заболевание проявляется, но его степень, скорость и тяжесть течения различны в связи с уровнем аккумуляции в организме последствий влияния этиологических факторов, возникающих в процессе жизнедеятельности.

Наследственные болезни могут передаваться по аутосомно-доминантному, аутосомно-рецессивному механизму наследования и быть сцепленными с полом.

Аутосомно-доминантный тип наследования проявляется даже в случае монозиготной передачи по наследству и встречается в половине случаев, когда один из родителей гетерозиготен по патологическому гену, а второй родитель здоров. В случае гомозиготности одного из родителей болезнь встречается у всех детей.

Аутосомно-рецессивный механизм наследования мутации сопровождается проявлением признака в клетке лишь в том случае, когда гены в обеих хромосомах мутантные. Иначе заболевание проявится, если мутантные гены находятся в гомозиготном состоянии.

В случае неполного доминирования ген появляется и в монозиготном и дизиготном состояниях, но степень поражения в монозиготном варианте гораздо слабее.

Наследственные заболевания, связанные с полом, обусловлены передачей генных нарушений в половых хромосомах, поэтому проявления болезни прямо связаны с половой принадлежностью особи.

Иногда генные мутации передаются через соматические хромосомы и их появления зависимы от пола. Например, атеросклероз сосудов при одинаковых условиях развивается раньше у особей мужского пола, так как женские половые гормоны блокируют развитие заболевания. Хорея Гентингтона раньше развивается у мужчин, чем у женщин, так как у первых быстрее идут процессы полимеризации генов.

Нарушения в реализации генетической программы связаны со следующими явлениями.

Расстройства митоза сопровождаются неравномерным распределением хромосом (редуцированный митоз или амитоз) и приводят к дисплазии (образованию клеток-монстров). Другой вариант последствий - это образование полиплоидных или многоядерных клеток. Массовое подавление митозов при потере способности клеток к делению ведет к нарушениям регенерации органов и тканей. Причинами являются изменения регуляции оперона, повреждение клеточного центра и/или микротрубочек, изменение цитотомии на фоне нарушения формирования микротрубочек и актоминимиозиновых взаимодействий, нарушения энергетического обеспечения деления и т. д. Нарушения в ходе митотического цикла зависят от стадии. В пресинтетический период интерфазы возникают разрывы в молекуле ДНК в ходе считывания генетической информации (транскрипции), тогда хромосомы и система контроля над процессами считывания генома распределяются неправильно. В синтетический период может нарушиться процесс репликации ДНК из-за блокирования ДНК-полимеразы, недостатка нуклеотидов, недостаточности энергетического обеспечения и т. д. В постсинтетический период, как и в предшествующие, может развиться нарушение содержания или блокада циклинзависимых киназ и циклинов, крупные повреждения генома. В процессе митоза могут произойти нарушения содержания митоз-стимулирующего фактора, слишком ранняя цитотомия или, наоборот, ее блокада (нарушение активности акто-минимиозиновых комплексов), неправильная сборка нитей веретена деления. Это лишь некоторые из многочисленных возможных вариантов нарушений этого процесса.

Нарушения мейоза обусловлены патологией в регуляции оперона, повреждением клеточного центра и/или полимеризации микротрубочек, изменениями в цитогомии на фоне сбоя в формировании микротрубочек и акто-минимиозиновых взаимодействий, патологией энергетического обеспечения деления. Это связано с изменением активности половых гормонов, патологией поддерживающих клеток извитых канальцев семенников, фолликулярного эпителия яичников и приводит к бесплодию или наследственным уродствам.

Тератогенные расстройства , связанные с изменением развертывания нормальной генетической программы в момент коммитирования генома и детерминации клеток. Они сопровождаются врожденными, ненаследуемыми расстройствами развития (уродствами). Клетки начинают формировать не те ткани и органы, которые предполагались программой развития. Тератогенными факторами могут быть гиповигаминозы, гипервитаминозы, травмы, ионизирующее излучение, некоторые лекарственные препараты, гипоксия и т. д.

Нарушения внеядерной наследственности в первую очередь происходят в геноме митохондрий. Патологические нарушения обусловлены мутациями в геноме, повреждениями трансляции на рРНК и др. Изменяется активность цепей окислительного фосфорилирования, и снижаются защитно-компенсаторные возможности организма к гипоксии, физическим перегрузкам и т. д.

Одним из нарушений функций генома является синдром преждевременного старения клеток (тканей и организма). Это группа заболеваний, которые могут быть вызваны несколькими причинами. Среди них выделяют нарушение процессов метилирования ДНК, чрезмерно быстрое разрушение теломеров хромосом, накопление мутаций в геноме.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Примерно 1 из 150 детей рождается с хромосомной аномалией . Эти нарушения вызваны ошибками в количестве или структуре хромосом. Многие дети с хромосомными проблемами имеют психические и/или физические врожденные дефекты. Некоторые хромосомные проблемы в конечном итоге приводят к выкидышу или мертворождению.

Хромосомы – это нитевидные структуры, находящиеся в клетках нашего организма и содержащие в себе набор генов. У людей насчитывается около 20 – 25 тыс. генов, которые определяют такие признаки, как цвет глаз и волос, а также отвечают за рост и развитие каждой части тела. У каждого человека в норме 46 хромосом, собранных в 23 хромосомные пары, в которых одна хромосома – унаследованная от матери, а вторая – от отца.

Причины хромосомных аномалий

Хромосомные патологии обычно являются результатом ошибки, которая происходит во время созревания сперматозоида или яйцеклетки. Почему происходят эти ошибки, пока не известно.

Яйцеклетки и сперматозоиды в норме содержат по 23 хромосомы. Когда они соединяются, они образуют оплодотворенную яйцеклетку с 46 хромосомами. Но иногда во время (или до) оплодотворения что-то идет не так. Так, например, яйцеклетка или сперматозоид могут неправильно развиться, в результате чего в них могут быть лишние хромосомы, или, наоборот, может не хватать хромосом.

При этом клетки с неправильным числом хромосом присоединяются к нормальной яйцеклетке или сперматозоиду, вследствие чего полученный эмбрион имеет хромосомные отклонения.

Наиболее распространенный тип хромосомной аномалии называется трисомией. Это означает, что у человека вместо двух копий конкретной хромосомы имеется три копии. Например, имеют три копии 21-й хромосомы.

В большинстве случаев эмбрион с неправильным числом хромосом не выживает. В таких случаях у женщины происходит выкидыш, как правило, на ранних сроках. Это часто происходит в самом начале беременности, прежде чем женщина может понять, что она беременна. Более чем 50% выкидышей в первом триместре вызваны именно хромосомными патологиями у эмбриона.

Другие ошибки могут возникнуть перед оплодотворением. Они могут привести к изменению структуры одной или нескольких хромосом. У людей со структурными хромосомными отклонениями, как правило, нормальное число хромосом. Тем не менее, небольшие кусочки хромосомы (или вся хромосома) могут быть удалены, скопированы, перевернуты, неуместны или могут обмениваться с частью другой хромосомы. Эти структурные перестройки могут не оказывать никакого влияния на человека, если у него есть все хромосомы, но они просто переставлены. В других случаях такие перестановки могут привести к потере беременности или врожденным дефектам.

Ошибки в делении клеток могут произойти вскоре после оплодотворения. Это может привести к мозаицизму – состоянию, при котором человек имеет клетки с различными генетическими наборами. Например, людям с одной из форм мозаицизма – с синдромом Тернера – не хватает Х-хромосомы в некоторых, но не во всех, клетках.

Диагностика хромосомных аномалий

Хромосомные отклонения можно диагностировать еще до рождения ребенка путем пренатальных исследований, таких как, например, амниоцентез или биопсия хориона, или уже после рождения с помощью анализа крови.

Клетки, полученные в результате этих анализов, выращиваются в лаборатории, а затем их хромосомы исследуются под микроскопом. Лаборатория делает изображение (кариотип) всех хромосом человека, расположенных в порядке от большего к меньшему. Кариотип показывает количество, размер и форму хромосом и помогает врачам выявить любые отклонения.

Первый пренатальный скрининг заключается во взятии на анализ материнской крови в первом триместре беременности (между 10 и 13 неделями беременности), а также в специальном ультразвуковом исследовании задней части шеи ребенка (так называемого воротникового пространства).

Второй пренатальный скрининг проводится во втором триместре беременности и заключается в анализе материнской крови на сроке между 16 и 18 неделями. Этот скрининг позволяет выявить беременности, которые находятся на более высоких рисках по наличию генетических нарушений.

Тем не менее, скрининг-тесты не могут точно диагностировать синдром Дауна или другие. Врачи предлагают женщинам, у которых выявлены аномальные результаты скрининг-тестов, пройти дополнительные исследования – биопсию хориона и амниоцентез, чтобы окончательно диагностировать или исключить эти нарушения.

Самые распространенные хромосомные аномалии

Первые 22 пары хромосом называются аутосомами или соматическими (неполовыми) хромосомами. Наиболее распространенные нарушения этих хромосом включают в себя:

1. Синдром Дауна (трисомия 21 хромосомы) – одно из наиболее распространенных хромосомных отклонений, диагностируемое примерно у 1 из 800 младенцев. Люди с синдромом Дауна имеют различную степень умственного развития, характерные черты лица и, зачастую, врожденные аномалии в развитии сердца и другие проблемы.

Современные перспективы развития детей с синдромом Дауна намного ярче, чем были раньше. Большинство из них имеют ограниченные интеллектуальные возможности в легкой и умеренной форме. При условии раннего вмешательства и специального образования, многие из таких детей учатся читать и писать и с детства участвуют в различных мероприятиях.

Риск синдрома Дауна и других трисомий увеличивается с возрастом матери. Риск рождения ребенка с синдромом Дауна составляет примерно:

  • 1 из 1300 – если возраст матери 25 лет;
  • 1 из 1000 – если возраст матери 30 лет;
  • 1 из 400 – если возраст матери 35 лет;
  • 1 из 100 – если возраст матери 40 лет;
  • 1 из 35 – если возраст матери 45 лет.

2. Трисомии 13 и 18 хромосом – эти трисомии обычно более серьезные, чем синдром Дауна, но, к счастью, довольно редкие. Примерно 1 из 16000 младенцев рождается с трисомией 13 (синдром Патау), и 1 на 5000 младенцев – с трисомией 18 (синдром Эдвардса). Дети с трисомиями 13 и 18, как правило, страдают тяжелыми отклонениями в умственном развитии и имеют множество врожденных физических дефектов. Большинство таких детей умирает в возрасте до одного года.

Последняя, 23-я пара хромосом – это половые хромосомы, называемые хромосомами X и хромосомами Y. Как правило, женщины имеют две Х-хромосомы, а у мужчины одна Х-хромосома и одна Y-хромосома. Аномалии половых хромосом могут вызвать бесплодие, нарушения роста и проблемы с обучением и поведением.

Наиболее распространенные аномалии половых хромосом включают в себя:

1. Синдром Тернера – это нарушение затрагивает приблизительно 1 из 2500 плодов женского пола. У девочки с синдромом Тернера есть одна нормальная Х-хромосома и полностью или частично отсутствует вторая Х-хромосома. Как правило, такие девочки бесплодны и не подвергаются изменениям нормального полового созревания, если они не будут принимать синтетические половые гормоны.

Затронутые синдромом Тернера девушки очень невысокие, хотя лечение гормоном роста может помочь увеличению роста. Кроме того, у них присутствует целый комплекс проблем со здоровьем, особенно с сердцем и почками. Большинство девочек с синдромом Тернера обладают нормальным интеллектом, хотя и испытывают некоторые трудности в обучении, особенно в математике и пространственном мышлении.

2. Трисомия по Х-хромосоме – примерно у 1 из 1000 женщин имеется дополнительная Х-хромосома. Такие женщины отличаются очень высоким ростом. Они, как правило, не имеют физических врожденных дефектов, у них нормальное половое созревание и они способны к деторождению. У таких женщин нормальный интеллект, но могут быть и серьезные проблемы с учебой.

Поскольку такие девушки здоровы и имют нормальный внешний вид, их родители часто не знают, что у их дочери есть . Некоторые родители узнают, что у их ребенка подобное отклонение, если матери во время вынашивания беременности был проведен один из инвазивных методов пренатальной диагностики (амниоцентез или хориоцентез).

3. Синдром Клайнфельтера – это нарушение затрагивает приблизительно 1 из 500 – 1000 мальчиков. У мальчиков с синдромом Клайнфельтера есть две (а иногда и больше) Х-хромосомы вместе с одной нормальной Y-хромосомой. Такие мальчики обычно имеют нормальный интеллект, хотя у многих наблюдаются проблемы с учебой. Когда такие мальчики взрослеют, у них отмечается пониженная секреция тестостерона и они оказываются бесплодными.

4. Дисомия по Y-хромосоме (XYY) – примерно 1 из 1000 мужчин рождается с одной или несколькими дополнительными Y-хромосомами. У такихх мужчин нормальное половое созревание и они не бесплодны. Большинство из них имеют нормальный интеллект, хотя могут быть некоторые трудности в обучении, поведении и проблемы с речью и усвоением языков. Как и в случае с трисомией по Х-хромосоме у женщин, многие мужчины и их родители не знают, что у них есть такая аномалия, пока не будет проведена пренатальная диагностика.

Менее распространенные хромосомные аномалии

Новые методы анализа хромосом позволяют определить крошечные хромосомные патологии, которые не могут быть видны даже под мощным микроскопом. В результате, всё больше родителей узнают, что у их ребенка есть генетическая аномалия.

Некоторые из таких необычных и редких аномалий включают в себя:

  • Делеция – отсутствие небольшого участка хромосомы;
  • Микроделеция — отсутствие очень небольшого количества хромосом, возможно, не хватает только одного гена;
  • Транслокация – часть одной хромосомы присоединяется к другой хромосоме;
  • Инверсия – часть хромосомы пропущена, а порядок генов изменен на обратный;
  • Дублирование (дупликация) – часть хромосомы дублируется, что приводит к образованию дополнительного генетического материала;
  • Кольцевая хромосома – когда на обоих концах хромосомы происходит удаление генетического материала, и новые концы объединяются и образуют кольцо.

Некоторые хромосомные патологии настолько редки, что науке известен только один или несколько случаев. Некоторые аномалии (например, некоторые транслокации и инверсии) могут никак не повлиять на здоровье человека, если отсутствует не генетический материал.

Некоторые необычные расстройства могут быть вызваны небольшими хромосомными делециями. Примерами являются:

  • Синдром кошачьего крика (делеция по 5 хромосоме) – больные дети в младенчестве отличаются криком на высоких тонах, как будто кричит кошка. У них есть существенные проблемы в физическом и интеллектуальном развитии. С таким заболеванием рождается примерно 1 из 20 – 50 тыс. младенцев;
  • Синдром Прадера-Вилл и (делеция по 15 хромосоме) – больные дети имеют отклонения в умственном развитии и в обучении, низкий рост и проблемы с поведением. У большинства таких детей развивается экстремальное ожирение. С таким заболеванием рождается примерно 1 из 10 – 25 тыс. младенцев;
  • Синдром Ди Джорджи (делеция по 22 хромосоме или делеция 22q11) – с делецией в определенной части 22 хромосомы рождается примерно 1 из 4000 младенцев. Данная делеция вызывает различные проблемы, которые могут включать в себя пороки сердца, расщелину губы/неба (волчья пасть и заячья губа), нарушения иммунной системы, аномальные черты лица и проблемы в обучении;
  • Синдром Вольфа-Хиршхорна (делеция по 4 хромосоме) – это расстройство характеризуется отклонениями в умственном развитии, пороками сердца, плохим мышечным тонусом, судорогами и другими проблемами. Это заболевание затрагивает примерно 1 из 50000 младенцев.

За исключением людей с синдромом Ди Джорджи, люди с вышеперечисленными синдромами бесплодны. Что касается людей с синдромом Ди Джорджи, то эта патология передается по наследству на 50% с каждой беременностью.

Новые методы анализа хромосом иногда могут точно определить, где отсутствует генетический материал, или где присутствует лишний ген. Если врач точно знает, где находится виновник хромосомной аномалии , он может оценить всю степень его влияния на ребенка и дать примерный прогноз развития этого ребенка в будущем. Часто это помогает родителям принять решение о сохранении беременности и заранее подготовиться к рождению немножко не такого, как все, малыша.

Выделяют несколько причин нарушений генетической программы клетки.

К изменениям биохимической структуры генов относят:

  • точечные мутации с выпадением какого-либо из нуклеотидов, приводящие к дисфункции программирования генетической информации;
  • выпадение части хромосомы;
  • полимеризацию с образованием дополнительных участков хромосом.

Может отсутствовать или появиться одна или несколько новых хромосом.

Активация патологических генов может быть связана:

  • со структурными изменениями в генах-регуляторах,
  • с активацией летальных генов при гомозиготности по аутосомно-рецессивным генам или проявлении патогенных генов, связанных с полом.

Кроме того, проявление патогенного аутосомно-рецессивного признака может быть связано с другим геном (сцепленные гены и признаки).

Внедрение в геном фрагмента чужеродной ДНК с патогенными свойствами , например, вируса, может привести к гибели клетки или персистенции вируса внутри нее. Данная персистенция нередко приводит к возникновению злокачественного опухолевого роста. В условиях эксперимента исследователи в клетку вводят как патологические, так и недостающие гены (генная инженерия).

Все перечисленные нарушения генома могут передаваться по наследству , если они возникли в половых клетках, либо вести к соматическим изменениям в организме животного без передачи по наследству (геном изменен в соматических клетках).

Генетический материал может быть изменен столь грубо, что это становится хорошо заметным даже при изучении хромосом с помощью световой микроскопии во время деления. Это так называемые геномные и хромосомные мутации.

Геномные мутации ведут к грубому изменению структуры ядерного наследственного материала в целом. Сопровождаются изменением числа и формы хромосом, соотношением их содержания в различных клетках. Нередко геномные мутации характеризует анэуплоидия, гетероплоидия или полиплоидия, что часто наблюдают в злокачественных опухолевых клетках при нарушении митоза (при редуцированном митозе). Геномная мутация может быть обусловлена тем, что одна из хромосом представлена не двумя, как обычно в соматической клетке, а тремя и более копиями. Пример такой мутации - синдром Дауна.

Хромосомные мутации возникают при изменении структуры отдельных хромосом, увеличении или уменьшении размеров плеч, транслокации участка одной хромосомы на другую, поворотом участка хромосомы на 180°. Нехватка одного из участков хромосомы называется делецией . Выпадение значительных участков хромосомы обычно ведет к гибели организма. Удвоение части хромосомы - дупликация. Переворот участка хромосомы на 180° обозначают как инверсию и фенотипически она может не проявляться. Обмен участками между негомологичными хромосомами - транслокация - обычно ведет к нарушениям развития организма, несовместимым с жизнью.

Генная, или точечная, мутация - это замена отдельных нуклеотидов или небольших участков генома в пределах одного гена. Генная мутация незаметна при гистологическом исследовании, но изменяет фенотип клетки, что ведет к формированию в клетке и/или в организме в целом новых признаков.

Выделяют конформационные мутации , когда происходит замена одного нуклеотида другим с изменением двойной спирали ДНК.

Иногда мутация не приводит к изменению информации, хранимой геномом. Такое изменение генома называют молчащей мутацией . Если мутация вызывает искажение информации, хранимой геномом, то ее называют мутацией, искажающей биологический смысл наследственной информации . Это приводит к образованию ферментов с измененной активностью, обеспечивает новые признаки, необычные для клетки и целого организма.

Под мутацией, не имеющей смысла , понимают генную мутацию, которая так изменяет структуру гена, что считывание с него информации становится невозможным, либо образуется последовательность иРНК, которая не может транслироваться рибосомой.

Мутагены - это факторы любой природы, изменяющие структуру генома и вызывающие мутации. Выделяют эндогенные и экзогенные мутагены . Это могут быть воздействия физической природы (ионизирующая радиация, ультрафиолетовое излучение, травмы, повышенная температура). Химическими мутагенами являются некоторые пестициды, промышленные яды (бензол, бензопирен, эпоксиды, некоторые альдегиды), ртутные соединения, цитостатики. Мутагенное действие оказывают некоторые пищевые добавки (цикламаты, ароматические углеводы), пероксидные соединения липидов, свободные кислородные радикалы, содержащиеся в пероксиде водорода и озоне.

В результате мутаций возникают генетические заболевания.

  • Заболевания, полностью вызванные влиянием патологического гена. Эти нарушения проявляются всегда вне зависимости от особенностей, предшествующих жизнедеятельности клеток и организма в целом. Обычно проявления, вызванные такими мутациями, можно наблюдать уже с момента рождения животного или человека.
  • Болезни, при которых генетический фактор проявляется лишь при наличии соответствующих условий окружающей среды и особенностей индивидуального развития. Так, склонность к сахарному диабету может проявиться в зависимости от особенностей питания. Этот вид наследственных заболеваний практически всегда выявляют после рождения, иногда в пожилом и старческом возрасте.
  • Заболевания, при которых наследственность является ведущим причинным фактором. Заболевание проявляется, но его степень, скорость и тяжесть течения различны в связи с уровнем аккумуляции в организме последствий влияния этиологических факторов, возникающих в процессе жизнедеятельности.

Наследственные болезни могут передаваться по аутосомно-доминантному, аутосомно-рецессивному механизму наследования и быть сцепленными с полом.

Наследственные заболевания, связанные с полом, обусловлены передачей генных нарушений в половых хромосомах, поэтому проявления болезни прямо связаны с половой принадлежностью особи.

Иногда генные мутации передаются через соматические хромосомы и их появления зависимы от пола. Например, атеросклероз сосудов при одинаковых условиях развивается раньше у особей мужского пола, так как женские половые гормоны блокируют развитие заболевания.

Нарушения в реализации генетической программы связаны со следующими явлениями.

Расстройства митоза сопровождаются неравномерным распределением хромосом (редуцированный митоз или амитоз) и приводят к дисплазии (образованию клеток-монстров).

Другой вариант последствий - это образование полиплоидных или многоядерных клеток. Массовое подавление митозов при потере способности клеток к делению ведет к нарушениям регенерации органов и тканей. Причинами являются изменения регуляции оперона, повреждение клеточного центра или микротрубочек, изменение цитотомии на фоне нарушения формирования микротрубочек и актоминимиозиновых взаимодействий, нарушения энергетического обеспечения деления и т. д.

Все наследственные болезни вызываются мутациями — нарушениями генетического материала.

Хромосомные болезни — заболевания, вызванные хромосомным и геномными и

Изменения, вызывающие заболевания:

  • выпадение участка хромосомы;
  • добавление новых участков или даже целых хромосом

Как мы знаем, есть хромосомы неполовые — .

Давайте рассмотрим аутосомные (хромосомные) заболевания — те, которые передаются по наследству и не зависят от пола

Делеции - хромосомные перестройки, при которых происходит потеря участка хромосомы. Делеция может быть следствием разрыва хромосомы или результатом неравного кроссинговера.

1. Есть часто встречающаяся делеция 5-ой хромосомы

(синдром кошачьего крика)

Заболевание достаточно редкое, его симптомы:

  • отставание в развитии;
  • мышечная дистрофия;
  • кошачеподобное лицо (расставленные глаза);
  • нарушение в строении гортани, поэтому у ребенка получается плач, схожий с кошачьим мяуканьем (отсюда и название)

2. Делеция 3-й хромосомы

Такие организмы не жизнеспособны.

Получается, что перестройка или выпадение даже одного небольшого участка хромосомы приводит к довольно значительным осложнениям.

Делеция 21-й хромосомы

(белокровие, лейкоз, анемия)

Это хромосомное заболевание характеризуется тем, что образуется либо мало эритроцитов, либо они имеют форму серпа (серповидно-клеточная анемия). Т.к. красные кровяные клетки отвечают за транспорт кислорода, то заболевание тяжелое.

3. Трисомия по 21-й хромосоме

(синдром Дауна)

В кариотипе такого организма не две, а три 21-х хромосом.

Это очень распространенное хромосомное заболевание. Частота рождения — 1: 500 (0.2%).

Симптомы:

1) монголойдный тип лица;

2) укороченные конечности;

3) психическая отсталость (многие ученые спорят с этим утверждением. У людей с синдромом Дауна скорее «другая» психическая активность, чем у большинства нормальных людей);

Причины трисомии:

Как правило, каждая клетка человека содержит 23 пары разных хромосом. Каждая хромосома несет гены, которые необходимы для правильного развития и поддержания нашего тела. В концепции, человек наследует 23 хромосомы от матери (через яйцеклетку) и 23 хромосомы от отца (через сперматозоид). Однако иногда человек наследует дополнительный хромосомный набор от одного из родителей. В случае синдрома Дауна, наиболее часто наследуют две копии 21-й хромосомы от матери и одну 21-ю хромосому от отца, в общей сложности получается три хромосомы 21. Именно из-за такого типа наследования синдром Дауна называют трисомией по 21-ой хромосоме.

Есть еще несколько хромосомных болезней (трисомий) , но подробно мы их разбирать не будем…

Мутации половых хромосом

1. Трисомия Х

У организма с таким заболевание вместо двух Х — ХХХ. Морфологические и функциональные нарушения связаны, в основном, с половой системой. Люди с такой мутацией могут даже не догадываться о своем кариотипе.

(Бывают и тетрасомия — ХХХХ, и пентасомия, но отклонения в развитии в этих случаях уже серьезные)

2. Моносомия Х

(синдром Тернера)

Отклонения есть как в умственном, так и в физическом (в основном. половом) развитии.

3. Синдром ХХУ или ХУУ

(синдром Клайнтельфера)

ХХY — проявляется как женоподобное телосложение (вторичные половые признаки) у мужчин. Люди с такой хромосомной болезнью психически здоровы, но бесплодны.

XYY — здоровы, могут иметь потомство, но агрессивны (социально опасны).

Это далеко не все мутации, известные науке и медицине. Многие из них приводят к смерти еще на стадии эмбрионального развития. Поэтому, в отличие от генных, хромосомные болезни реже передаются по наследству .

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.