Таламус мозга. Мозг таламический. Функции таламуса и последствия их нарушении

Важнейшей частью нашего мозга является промежуточный мозг, который назван так, потому что находится между больших полушарий. В ходе эволюции большие полушария и промежуточный мозг формируются из структуры, называющейся . Центральная часть переднего мозга дает два выроста, которые превращаются в большие полушария, а центр остается промежуточным мозгом. Внутри промежуточного мозга есть небольшая узкая щелевидная полость, называющаяся третьим желудочком.

Промежуточный мозг состоит из двух основных отделов: верхняя половина называется таламус, а нижняя - гипоталамус. Их реальный размер составляет 3–4 сантиметра. Кроме таламуса и гипоталамуса выделяют эпиталамус, к которому примыкает эпифиз (это наша эндокринная железа, она находится в верхней задней части таламуса) и гипофиз (это еще одна эндокринная железа, снизу примыкающая к гипоталамусу). Если идти вдоль стволовых структур головного мозга, то нам попадется сначала , мост, потом средний мозг, а затем мы попадем в зону таламуса и гипоталамуса. С промежуточным мозгом связан зрительный нерв - второй черепной нерв, который входит в мозг на границе таламуса и гипоталамуса.

Таламус - это ключевая структура, находящаяся на входе в кору больших полушарий. Кора больших полушарий - это самые высшие и самые замечательные центры, которые занимаются самыми сложными функциями. Для того чтобы они эффективно работали, нужно, чтобы к ним поступали правильные информационные потоки в правильном количестве. Этими функциями занимается таламус, поэтому его еще называют «секретарем» коры больших полушарий.

В коре больших полушарий есть зрительные, слуховые, двигательные центры, а также центры, связанные с эмоциями. В таламусе есть тот же самый набор центров, но только в уменьшенном размере. Есть группа «секретарей», которые помогают коре больших полушарий правильно и эффективно функционировать. Таламус можно сравнить с информационной воронкой, пропускающей часть сигналов в кору больших полушарий, а остальные сигналы либо вообще блокирует, либо пропускает в ослабленном виде. Проблема состоит в том, что кора больших полушарий не может обработать то огромное количество информационных потоков, которое все время движется по нашему мозгу.

Зрительные центры поставляют зрительную информацию, слуховые - слуховую, центры памяти вспоминают вчерашний вечер, центры эмоций переживают эмоции, двигательные центры хотят двигаться. Мозжечок все время предлагает коре больших полушарий: «Давай это сделаем! Давай то сделаем! Почему мы сидим и не двигаемся, мы столько всего умеем?» Чтобы действительно сидеть и не двигаться, чтобы, например, школьник на уроке спокойно сидел, таламус должен постоянно блокировать эти информационные потоки, чтобы кора больших полушарий не получала лишних возбуждающих сигналов. То есть это действительно информационная воронка, которая должна много чего срезать. Срезание идет за счет работы тормозных нейронов, то есть в таламусе, так же как в мозжечке и базальных ганглиях, очень важна функция гамма-аминомасляной кислоты (ГАМК) и тормозные реакции.

Если таламус работает плохо, то, например, у младших школьников возникает довольно типичное изменение поведения, которое называется СДВГ (синдром дефицита внимания и гиперактивности). Проанализируйте название: дефицит внимания - не может долго удерживать информационный канал, то есть таламус не может долго блокировать сигналы от тела, движения, происходящего за окном. Поэтому школьник не может долго слушать учителя, и его внимание быстро рассеивается. Гиперактивность - это неспособность долго сдерживать те двигательные предложения, которые поступают от мозжечка и базальных ганглиев. Ученик вас только что слушал, а вот он уже крутится, полез в портфель, схватил учебник и бросил в соседа - сложно все это контролировать. Поэтому по-настоящему зрелый таламус формируется годам к 8–10. И только вы обрадовались, что с ребенком уже все хорошо и вы им управляете, как начинается пубертатный период, половые гормоны опять нарушают работу таламуса, и опять возникают проблемы.

Если мы пойдем вдоль таламуса, мы увидим в нем массу структур, которые соответствуют разным центрам коры больших полушарий. Передние ядра таламуса - это ядра, связанные с передачей информации в центры памяти и центры, работающие с эмоциями. За передними ядрами таламуса находятся так называемые вентральные боковые, вентральные латеральные ядра таламуса, которые связаны с двигательным контролем, передняя часть этих ядер работает с базальными ганглиями, а задняя часть - с мозжечком.

Дальше находится вентробазальный комплекс, который в основном проводит информацию о чувствительности тела. Эту информацию в таламус поставляет . Как известно, есть нейроны спинномозговых ганглиев, сенсорные нейроны, собирающие кожную и мышечную чувствительность. Нейроны спинномозговых ганглиев формируют пучки аксонов, которые в составе белого вещества спинного мозга, не заходя в серое вещество, поднимаются сначала в продолговатый мозг, а потом идут в таламус. Эти скопления волокон называются дорсальные столбы, или тонкие и клиновидные пучки, или нежные и клиновидные пучки спинного мозга, они очень важны для проведения кожной и мышечной чувствительности. Мышечная чувствительность из спинного мозга в головной поднимается по двум параллельным путям - в таламус и мозжечок, потому что управление движениями идет и за счет автоматизированных мозжечковых программ, и за счет произвольных программ, которые генерирует кора больших полушарий. Коре больших полушарий, конечно, нужны эти информационные потоки.

Над вентробазальным комплексом ядер находятся зрительные и слуховые центры таламуса. Зрительные зоны таламуса очень обширны, там находится подушка и латеральное коленчатое тело, в которое приходит зрительный нерв. Слуховые ядра таламуса - это медиальные коленчатые тела, они поменьше, чем зрительные ядра, и основные информационные потоки поступают к ним из слуховых ядер продолговатого мозга и моста, из ядер восьмого нерва.

Кроме уже перечисленного в таламусе много и других структур, связанных, например, с ассоциативными зонами коры больших полушарий, и есть весьма известные медиальные (самые внутренние) ядра таламуса, граничащие с третьим желудочком. В медиальных ядрах есть скопления нервных клеток, которые обрабатывают и пропускают вкусовые, болевые сигналы, вестибулярную чувствительность. Кроме того, медиальные ядра связаны с центрами сна и бодрствования.

Существует спиноталамический тракт, идущий прямо из спинного мозга и заканчивающийся в медиальных ядрах таламуса. Это специфический тракт, путь для проведения болевых сигналов. Если в медиальных ядрах случается какой-то сбой, то может возникать патология, которая называется хроническая , когда у человека постоянно болит, например, большой палец правой руки. Причем с самим пальцем все нормально, но где-нибудь в таламусе произошел микроинсульт, и теперь там возникает патологический болевой сигнал, мешающий человеку жить. Подобного рода патология не блокируется никакими анальгетиками, и в тяжелых случаях люди идут на операцию, которая называется таламотомия, когда аккуратно разрушается точечная зона медиального таламуса, и тогда прекращается передача патологического болевого сигнала.

Нижняя часть промежуточного мозга - гипоталамус - занимается совершенно другими задачами. Гипоталамус ориентирован в основном во внутреннюю среду нашего организма. Там мы находим нервные клетки, которые занимаются, во-первых, нейроэндокринной регуляцией (гипоталамус - главный эндокринный центр нашего организма). Во-вторых, в гипоталамусе находятся нейроны, которые занимаются вегетативной регуляцией, то есть при помощи симпатической и парасимпатической системы они управляют деятельностью разных внутренних органов. В-третьих, в гипоталамусе мы обнаруживаем ряд важнейших центров биологических потребностей. Эти три группы функций гипоталамуса колоссально важны.

С точки зрения нейроэндокринной регуляции важно, что нервные клетки гипоталамуса постоянно оценивают концентрацию основных , которые находятся в нашей крови. Гормоны щитовидной железы, половых желез, надпочечников - все эти гормоны отслеживаются гипоталамусом. Гипоталамус врожденно знает, сколько их должно быть, и у него есть способы донести до конкретных эндокринных желез сигнал о том, что надо выделять больше или меньше гормонов. При этом гипоталамус использует в основном воздействие на гипофиз.

Эндокринная система устроена тремя этажами. Есть конкретная эндокринная железа, щитовидная. Она выделяет тироксины - важные гормоны, от которых зависит общий уровень активности каждой клетки нашего организма. Для того чтобы щитовидная железа выделяла правильное количество тироксинов, есть гипофиз, выделяющий тиреотропный гормон, и этот гормон говорит щитовидке, с какой активностью работать. Но над гипофизом находится гипоталамус, который с помощью своих гормонов, называющихся рилизинг-гормоны, говорит гипофизу, сколько выделять тиреотропных гормонов и в конечном итоге менять активность щитовой железы. Если тироксинов слишком мало, гипоталамус это чувствует, выделяет тиролиберин, от этого гипофиз начинает выделять больше тиреотропного гормона, и щитовидная железа начинает выделять больше тироксина. Подобного рода регуляторные контуры характерны не только для щитовидной железы, но для коры надпочечников, половых желез, подобным образом контролируется выделение гормонов роста.

Кроме этих функций, нейроны гипоталамуса и сами способны выделять гормоны прямо в кровь - такие гормоны, как, например, окситоцин и вазопрессин. Аксоны нервных клеток центральной зоны гипоталамуса (серый бугор гипоталамуса) идут в заднюю долю гипофиза, где прямо в кровь из этих аксонов выделяются окситоцин и вазопрессин. Окситоцин - это известный гормон, влияющий на сокращение матки при родах, молочных желез при кормлении ребенка. Кроме того, окситоцин известен сейчас как медиатор привязанности. Вазопрессин - это гормон, влияющий на работу почек и центров жажды. От концентрации вазопрессина зависит наша текущая потребность в жидкости.

С точки зрения вегетативной регуляции очень важна передняя часть гипоталамуса. Там находятся нейроны-терморецепторы, которые постоянно оценивают температуру крови, протекающей через гипоталамус. Если кровь слишком теплая, именно из гипоталамуса запускаются реакции, снижающие температуру нашего тела. Расширяются сосуды кожи, и начинается потоотделение. Если кровь, протекающая через гипоталамус, слишком холодная, то запускаются реакции сжатия сосудов кожи, и возникает дрожь или мурашки на коже. Это все вегетативные реакции, которые управляются гипоталамусом. Задняя часть гипоталамуса обеспечивает вегетативное сопровождение стресса, что тоже очень важно. Наконец, в гипоталамусе находятся центры шести наших важнейших биологических потребностей: центры голода и жажды, центры полового и родительского поведения и центры страха и агрессии.

Как и любой другой орган мозга, таламус имеет крайне важную и незаменимую функцию для организма. Трудно представить, но этот сравнительно маленький орган несет ответственность за все психические функции: восприятие и понимание, память и мышление, ведь благодаря ему мы видим, понимаем, ощущаем мир и воспринимаем все, что нас окружает. Благодаря его работе мы ориентируемся в пространстве и во времени, чувствуем боль, этот «коллектор чувствительности» воспринимаем и перерабатывает информацию, полученную от всех рецепторов, кроме обоняния и передает необходимый сигнал в нужный отдел коры головного мозга. В итоге организм дает правильную реакцию, проявляет правильные модели поведения на соответствующий раздражитель или сигнал.

Общие сведения

Промежуточный мозг расположен под мозолистым телом и состоит из: таламуса (таламического мозга) и гипоталамуса.

Таламус (он же: зрительный бугор, коллектор чувствительности, информатор организма) – это отдел промежуточного мозга, находящийся в его верхней части, над стволом мозга. Сюда стекаются сенсорные сигналы, импульсы из самых разных частей организма и от всех рецепторов (кроме обоняния). Тут они перерабатываются, орган оценивает, насколько важны приходящие импульсы для человека и отправляет информацию дальше в ЦНС (центральная нервная система) или к коре головного мозга. Этот кропотливый и жизненно важный процесс происходит благодаря составляющим таламуса – 120 разнофункциональным ядрам, которые несут ответственность за принятие сигналов, импульсов и за отправку переработанной информации в соответствующий .

Благодаря сложной структуре, «зрительный бугор» способен не только принимать и перерабатывать сигналы, но и анализировать их.

Готовая информация о состоянии организма и его проблемах поступает к коре головного мозга, которая, в свою очередь, разрабатывает стратегию решения и устранения проблемы, стратегию дальнейших действий и поведения.

Строение

Таламус - парное яйцевидное образование, состоящее из нервных клеток, которые объединяются в ядра, благодаря которым и происходит восприятия и обработка сигналов и импульсов, идущих от разных органов чувств. Таламус занимает основную часть промежуточного мозга (приблизительно 80%). Состоит из 120 разнофункциональных ядер серого вещества. По форме он напоминает небольшое куриное яйцо.

Исходя из строения и расположения отдельных частей, таламический мозг можно разделить на: метаталамус, эпиталамус и субталамус.

Метаталамус (подкорковый слуховой и зрительный центр) - состоит из медиальных и латеральных коленчатых тел. В ядро медиального коленчатого тела заканчивается слуховая петля, а в латеральную – зрительные тракты.

Медиальные коленчатые тела составляют слуховой центр. В медиальной части метаталамуса из подкоркового слухового центра аксоны клеток направляются к корковому концу слухового анализатора (верхняя височная извилина). Дисфункция этой части метаталамуса может привести к снижению слуха или к глухоте.

Латеральные коленчатые тела составляют подкорковый зрительный центр. Тут заканчиваются зрительные тракты. Аксоны клеток, формируют зрительную лучистость, по которой зрительные импульсы достигают коркового конца зрительного анализатора (затылочная доля). Дисфункция этого центра может привести к проблемам со зрением, а серьезные поражения – к слепоте.

Эпиталамус (надталамус) – верхняя задняя часть таламуса, которая возвышается над ним: включает эпифиз, который является надмозговой железой внутренней секреции (шишковидное тело). Эпифиз находится в подвешенном состоянии, так как расположен на поводках. Он отвечает за выработку гормонов: днем он вырабатывает гормон серотонин (гормон радости), а ночью – мелатонин (регулятор режима дня и гормон ответственный за цвет кожи и глаз). Эпиталамус играет роль в регуляции жизненных циклов, регулирует период наступления полового созревания, режимы сна и бодрствования, тормозит процессы старения.

Поражения эпиталамуса приводят к нарушению жизненных циклов, в том числе к бессоннице, а также к половым дисфункциям.

Субталамус (подталамус) или преталамус является мозговым веществом маленького объема. Состоит в основном из субталамического ядра и имеет соединения с бледным шаром. Субталамус контролирует мышечные ответы и отвечает за выбор действия. Поражение субталамуса приводят к двигательным нарушениям, тремору, параличу.

Кроме всего перечисленного, таламус имеет связи со спинным мозгом, с гипоталамусом, подкорковыми ядрами и, естественно, с корой головного мозга.

Каждый отдел этого уникального органа несет определенную функцию и отвечает за жизненно важные процессы, без которых нормальное функционирование организма невозможно.

Функции таламуса

«Коллектор чувствительности» получает, фильтрует, перерабатывает, интегрирует и направляет в мозг информацию, которая поступает от всех рецепторов (кроме обоняния). Можно сказать, что в его центрах происходит формирование восприятия, ощущения, понимания, после чего обработанная информация или сигнал поступают в кору больших полушарий.

Главными функциями органа являются:

  • переработка информации получаемой от всех органов (рецепторы зрения, слуха, вкуса и осязания) чувств (кроме обоняния);
  • управление эмоциональными реакциями;
  • регулирование непроизвольной двигательной активности и мышечного тонуса;
  • поддерживание определенного уровня активности и возбудимости головного мозга, что необходимо для восприятия информации, сигналов, импульсов и раздражений исходящих извне, из окружающей среды;
  • отвечает за интенсивность и чувство боли.

Как мы уже говорили, каждая доля таламуса состоит из 120 ядер, которые исходя из функциональности, можно разделить на 4 основные группы:

  • латеральную (боковые);
  • медиальную (срединные);
  • ассоциативную.

Ретикулярная группа ядер (отвечает за равновесие) – отвечает за обеспечение равновесия при ходьбе и баланса в организме.

Латеральная группа (центр зрения) – отвечает за зрительное восприятие, принимает и передает импульсы в теменную, затылочную часть коры головного мозга – зрительной зоне.

Медиальная группа (центр слуха) - отвечает за слуховое восприятие, принимает и передает импульсы в височную часть коры — слуховой зоне.

Ассоциативная группа (тактильные ощущения) - принимает и передает в кору головного мозга тактильную информацию, то есть сигналы, исходящие от рецепторов кожных покровов и слизистых оболочек: болевые ощущения, зуд, удар, прикосновение, раздражение и т.д.

Также, с функциональной точки зрения, ядра можно разделить на: специфические и неспецифические.

К специфическим ядрам поступают сигналы от всех рецепторов (кроме обоняния). Они обеспечивают эмоциональную реакцию человека и отвечают за возникновение болевых ощущений.

Специфические ядра, в свою очередь, бывают:

  • внешние - получают импульсы от соответствующих рецепторов и отправляют информацию в конкретные зоны коры. Благодаря этим импульсам возникают чувства и ощущения;
  • внутренние - не имеют прямых связей с рецепторами. Получают информацию уже переработанной со стороны релейных ядер. От них импульсы идут в кору головного мозга в ассоциативные зоны. Благодаря этим импульсам возникают примитивные ощущения и обеспечивается взаимосвязь между сенсорными зонами и корой больших полушарий.

Неспецифические ядра поддерживают общую активность коры головного мозга, посылая неконкретные импульсы и стимулируя мозговую активность. Не имея прямой связи с корой, неспецифические ядра таламуса передают свои сигналы в подкорковые структуры.

Отдельно о зрительном бугре

Ранее считалось, что таламус обрабатывает только зрительные импульсы, тогда орган и получил название — зрительные бугры. Сейчас это название считается устаревшим, так как орган обрабатывает практически весь спектр афферентных систем (кроме обоняния).

Система, которая обеспечивает зрительное восприятие – одна из самых интересных. Основной внешний орган зрения – глаз – рецептор, который имеет сетчатку и оснащен особенными клетками (колбочки, палочки), которые трансформируют световой пучок и электрический сигнал. Электрический сигнал, в свою очередь, проходя по нервным клеткам, попадает в латеральный центр таламуса, который отправляет обработанный сигнал в центральный отдел коры головного мозга. Тут происходит окончательный анализ сигнала, благодаря чему формируется увиденное, то есть – картинка.

Чем опасны дисфункции зон таламуса

У таламуса сложная и налаженная структура, поэтому, если возникают сбои или проблемы в работе даже отдельно взятой зоны органа – это приводит к разным последствиям, влияя на отдельные функции организма и даже на весь организм в целом.

Прежде чем попасть в соответствующий центр коры, сигналы с рецепторов поступают в таламус, а точнее, в его определенную часть. Если определенные ядра таламуса повреждены, то импульс не обрабатывается, не доходит до коры или доходит в необработанной форме, следовательно, кора головного мозга и весь организм не получают нужную информацию.

Клинические проявления дисфункций таламуса зависят от конкретной зоны поражения и могут проявляться: проблемами с памятью, вниманием, пониманием, потерей ориентации в пространстве и во времени, нарушениями двигательной системы, проблемами со зрением, слухом, бессонницей, психическими расстройствами.

Одним из проявлений дисфункций органа может быть специфическая амнезия, которая ведет к частичной потере памяти. В этом случае, человек забывает события, произошедшие после повреждения или поражения соответствующей зоны органа.

Еще одно редкое заболевание, затрагивающее таламус – фатальная бессонница, которая может распространяться на нескольких представителей одной семьи. Болезнь возникает по причине мутации соответствующей зоны таламуса, которая отвечает за регулирование процессов сна и бодрствования. Из-за мутации происходит сбой в правильной работе соответствующего участка, и человек перестает спать.

Таламус – также является центр болевой чувствительности. При поражении соответствующих ядер таламуса возникает невыносимая боль либо, наоборот, полная потеря чувствительности.

Таламус, да и мозг в целом продолжают оставаться не до конца изученными структурами. И дальнейшие исследования сулят большие научные открытия и помощь в познании этого жизненно важного и сложного органа.

ПРОМЕЖУТОЧНЫЙ МОЗГ

В состав промежуточного мозга , diencephalon, входят:

I. Таламический мозг, thalamencephalon.

II. Подталамическая область или гипоталамус, hypothalamus.

III. Полостью промежуточного мозга является III желудочек, ventriculus tertius.

ТАЛАМИЧЕСКИЙ МОЗГ

Таламический мозг , thalamencephalon, включает три части:

1. Зрительный бугор (таламус), thalamus.

2. Надталамическую область, ерithalamus.

3. Заталамическую область, metathalamus.

ТАЛАМУС

Таламус , thalamus, представляет собой большое парное скопление серого вещества в боковых стенках промежуточного мозга по бокам III желудочка, имеющее яйцевидную форму.

Внешнее строение зрительного бугра:

Передний бугор, tuberculum anterius;

Задний конец - подушка, pulvinar;

Концевая полоска, stria terminalis, разделяет зрительный бугор и хвостатое ядро;

Мозговая полоска, stria medullaris thalami, проходит на границе верхней и медиальной поверхностей зрительного бугра;

Подталамическая (пограничная) борозда, sulcus hypothalamicus, проходит по нижнему краю таламуса; она является границей между таламическим мозгом и гипоталамусом;

Межталамическое сращение, adhesio interthalamica, соединяет зрительные бугры;

Сосудистая пластинка, tela choroidea, покрывает дорсальную поверхность таламуса (над ней располагается свод, fornix, относящийся к конечному мозгу).

Внутреннее строение зрительного бугра

Таламус состоит главным образом из серого вещества - ядер:

1) передние ядра таламуса , nuclei anteriores thalami, являются подкорковым центром обоняния:

Часть аксонов клеток передних ядер таламуса направляются в лимбическую область коры полушарий большого мозга; часть - заканчивается на нейронах медиальных ядер таламуса;

Имеет связи с сосочковыми телами посредством сосочково- таламического пучка, fasciculus mamillothalamicus (пучок Вик д"Азира), часть аксонов сосочковых тел направляется в верхние холмики среднего мозга, формируя сосочково-покрышечный пучок, fasciculus mamillotegmentalis.

2) вентро-латеральные ядра таламуса , nuclei ventrolaterales thalami , являются подкорковым центром общей чувствительности - на них заканчиваются волокна спинномозговой петли, медиальной и третичной петель; большая часть аксонов (80%) направляется в заднюю центральную извилину, формируя таламо-корковый тракт, tr.thalamocorticalis; меньшая часть - заканчивается в медиальных ядрах таламуса.

3) задние ядра таламуса , nuclei posteriores thalami, (ядра подушки, pulvinar) являются подкорковыми центрами зрения, в них заканчивается часть волокон зрительного тракта; аксоны клеток задних ядер таламуса направляются к медиальным ядрам таламуса, в подталамическую и лимбическую области мозга.

4) срединные ядра таламуса, nuclei mediani thalami, являются подкорковыми центрами вестибулярных и слуховых функций; аксоны клеток срединных ядер таламуса направляются в медиальные ядра таламуса, в кору височной и лобной долей.

5) медиальные ядра таламуса , nuclei mediales thalami, являются подкорковым чувствительным центром экстрапирамидной системы: здесь заканчивается часть аксонов нейроцитов всех ядер таламуса, т.е. сюда поступают все виды информации от подкорковых центров общей и специальной чувствительности и происходит ее анализ. Эта информация поступает к красным ядрам, которые обеспечивают бессознательные автоматизированные движения и поддержание тонуса мышц.

6) ретикулярные ядра таламуса , nuclei reticulares thalami, разбросаны по всему таламусу; они имеют двусторонние связи с ядрами ретикулярной формации спинного, продолговатого мозга, моста и среднего мозга.

НАДТАЛАМИЧЕСКАЯ ОБЛАСТЬ

Надталамическая область , ерitalamus, включает:

Шишковидное тело, corpus pineale (epiphysis) - железа внутренней секреции;

Поводки, habenulae;

Спайку поводков, commissura habenularum;

Треугольник поводков, trigonum habenulae.

Под эпифизом находится задняя спайка мозга, comissura cerebri posterior; в основании эпифиза имеется шишковидное углубление, recessus pinealis, представляющее собой полость, которая является продолжением третьего желудочка.

ЗАТАЛАМИЧЕСКАЯ ОБЛАСТЬ

Заталамическая область , metathalamus, включает:

- медиальное коленчатое тело , corpus geniculatum mediale, является подкорковым центром слуха; в нем заканчивается часть волокон латеральной петли; от медиальных коленчатых тел импульсы направляются в кору височной доли;

- латеральное коленчатое тело , corpus geniculatum laterale, является подкорковым центром зрения; в нем заканчивается часть волокон зрительного тракта; от латеральных коленчатых тел импульсы направляются в кору затылочной доли.

(thalamencephalon, PNA, BNA; син. мозг зрительный) часть промежуточного мозга, состоящая из таламуса, эпиталамуса и метаталамуса.

  • - центральный отдел нервной системы животных и человека. Состоит из нервной ткани: серого вещества и белого вещества...

    Начала современного Естествознания

  • - проекционный нервный путь мозжечка, начинающийся в зубчатом ядре, проходящий в верхней мозжечковой ножке и заканчивающийся в вентральных ядрах таламуса...

    Большой медицинский словарь

  • - Вид сверху. Полушария большого мозга удалены. Мозжечок вскрыт горизонтальным разрезом, проведенным на уровне горизонтальной щели мозжечка. мозжечково-красноядерный путь; ядро шатра; червь; шаровидное ядро...

    Атлас анатомии человека

  • - восходящий проекционный нервный путь экстрапирамидной системы, начинающийся в красном ядре и заканчивающийся в переднелатеральном яд ре талам...

    Большой медицинский словарь

  • - проекционный восходящий нервный путь, начинающийся в ядрах покрышки среднего мозга и заканчивающийся в ретикулярных ядрах таламуса...

    Большой медицинский словарь

  • - П. нервных волокон, идущий от медиального ядра сосцевидного тела к передним ядрам таламуса; представляет собой проекционный путь лимбической системы...

    Большой медицинский словарь

  • - П. нервных волокон, идущий от бледного шара к передневентральному ядру таламуса; относится к экстрапирамидной системе...

    Большой медицинский словарь

  • - см. Синдром зрительного бугра...

    Большой медицинский словарь

  • - повышение порога восприятия боли, сопровождающееся неприятным чувством жжения, которое возникает под действием стимулов, превышающих болевой порог. Причиной развития данного синдрома является заболевание таламуса...

    Медицинские термины

  • - ...
  • - ...

    Орфографический словарь-справочник

  • - ...

    Орфографический словарь-справочник

  • - ...

    Орфографический словарь-справочник

  • - ...

    Орфографический словарь-справочник

  • - ...

    Орфографический словарь-справочник

  • - прил., кол-во синонимов: 1 спиноталамический...

    Словарь синонимов

"мозг таламический" в книгах

Мозг

Из книги Человек-дельфин автора Майоль Жак

Мозг Об умственных способностях дельфина написано немало, их сравнивают даже с умом человека. По-моему, это ошибка, и вещи эти несопоставимые. Мозг человека создан для функционирования в земном пространстве, а дельфина - в водной среде. Мозг дельфина, с точки зрения

Мозг химический и мозг электрический

Из книги Исцеление от эмоциональных травм – путь к сотрудничеству, партнерству и гармонии автора Коннелли Кристин

Мозг химический и мозг электрический Многие молекулы, вступающие в связи с ИМБ-рецепторами, поступают к мембранам из крови, спинномозговой и межклеточной жидкости, куда они выбрасываются другими клетками. У этих веществ разные названия: гормоны, стероиды,

Технология мысленных приказов: как устроен первый интерфейс «мозг - мозг» Андрей Васильков

Из книги Цифровой журнал «Компьютерра» № 188 автора Журнал «Компьютерра»

Технология мысленных приказов: как устроен первый интерфейс «мозг - мозг» Андрей Васильков Опубликовано 29 августа 2013 Исследователи из университета штата Вашингтон провели необычный эксперимент, который можно считать первым в истории случаем

Серж Гингер Женский мозг и мужской мозг

Из книги Женский мозг и мужской мозг автора Гингер Серж

Серж Гингер Женский мозг и мужской мозг Сегодня вам повезло - у вас будет две лекции.Одна для женщин; другая - для мужчин!Фактически, я уже начал: прямо сейчас, женщины и мужчины слышат разные

Глава 3 Как перестроить свой мозг Ученый изменяет мозг: улучшение восприятия и памяти, скорости мышления

автора Дойдж Норман

Глава 3 Как перестроить свой мозг Ученый изменяет мозг: улучшение восприятия и памяти, скорости мышления В этой главе я хочу рассказать вам о Майкле Мерценихе и его работе. Имя этого человека связано с появлением не одного десятка инноваций и практических изобретений в

Приложение 1 Культура и преобразование мозга Не только мозг определяет культуру, но и культура формирует мозг

Из книги Пластичность мозга [Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга] автора Дойдж Норман

Приложение 1 Культура и преобразование мозга Не только мозг определяет культуру, но и культура формирует мозг Что связывает культуру и мозг?Нередко на этот вопрос ученые отвечают, что человеческий мозг, где возникают все мысли и действия, создает культуру. Исходя из того,

Боритесь за свой мозг и мозг своих близких

Из книги Измени свой мозг – изменится и возраст! автора Амен Дэниэл Дж.

Боритесь за свой мозг и мозг своих близких Томография мозга ОЭКТ научила меня быть «воином мозга». Никто не сделает это за меня. Наоборот, вокруг полно желающих подорвать здоровье моего мозга ради своей выгоды: «Хотите взять суперпорцию картошки фри всего за несколько

Женский мозг, мужской мозг

Из книги Какого пола ваш мозг? автора Лемберг Борис

Женский мозг, мужской мозг Женский и мужской мозг - разные. Однако недавние исследования показывают, насколько ошибочно предполагать, что все гендерные различия запрограммированы. По всему миру психологи и неврологи бьются над старым, как мир, вопросом: «Почему женщина

Древний мозг и новый мозг

Из книги Мозг напрокат. Как работает человеческое мышление и как создать душу для компьютера автора Редозубов Алексей

Древний мозг и новый мозг Посмотрим внимательнее, как устроен мозг. Рисунок 2. Строение мозга человекаОбозначения: 1. Борозда мозолистого тела. 2. Угловая борозда. 3. Угловая извилина. 4. Мозолистое тело. 5. Центральная борозда. 6. Парацентральная долька. 7. Предклинье. 8.

«Левый мозг»/«правый мозг»

Из книги Интуиция автора Майерс Дэвид Дж

«Левый мозг»/«правый мозг» Более 100 лет нам было известно, что два полушария головного мозга человека выполняют различные функции. Травмы, инсульты и опухоли левого полушария обычно влияли на функции рационального, вербального, неинтуитивного разума, такие как чтение,

Правый мозг, левый мозг

Из книги Загадки и тайны психики автора Батуев Александр

Правый мозг, левый мозг Если взглянуть на схематическое изображение мозга человека, то нетрудно заметить, что одним из самых крупных образований головного мозга являются симметрично расположенные большие полушария – правое и левое. Несмотря на то, что по

Левый мозг, правый мозг: введение

автора Сигел Дэниэл Дж.

Левый мозг, правый мозг: введение Вы знаете, что наш мозг разделен на два полушария. Эти две части мозга не только разделены анатомически, они, кроме того, выполняют разные функции. Некоторые даже полагают, что два полушария обладают каждое своей собственной личностью или

Социальный мозг: мозг включает понятие «Мы»

Из книги Воспитание с умом. 12 революционных стратегий всестороннего развития мозга вашего ребенка автора Сигел Дэниэл Дж.

Социальный мозг: мозг включает понятие «Мы» Что вы представляете себе, когда думаете о мозге? Возможно, вам вспоминается некий образ из школьного курса биологии: странный орган, плавающий в банке, или картинка в учебнике. Такое восприятие, когда мы рассматриваем

Глава 5 Занятой мозг – умный мозг?

Из книги Заставь свой мозг работать. Как максимально повысить свою эффективность автора Брэнн Эми

Глава 5 Занятой мозг – умный мозг? Как вы усваиваете новое и каким образом оптимизировать этот процесс Джесси приходилось учить и усваивать много нового. В мире медицины учиться приходится постоянно.И Джесси училась, сколько себя помнит. Однако с тех пор, как она

Мозг и «система канализации», или исторические модели мозга. Мозг или сердце?

Из книги Лабиринты ума автора Берснев Павел

Мозг и «система канализации», или исторические модели мозга. Мозг или сердце? С древнейших времен душу связывали с различными «материальными носителями». Например, у греков словом «френ» обозначали грудобрюшную перегородку, диафрагму, но вместе с тем и дух, душу, ум.

И другие образования .

Таламус расположен латеральнее III желудочка. Он занимает дорсальную часть промежуточного мозга и отделяется от нижележащего бороздой. Два таламуса соединены по средней линии у 70% людей посредством межталамической промежуточной ткани серого вещества. От базальных ядер таламус отделяется внутренней капсулой, состоящей из нервных волокон, соединяющих кору со стволовыми структурами и спинным мозгом. Многие волокна внутренней капсулы продолжают ход в каудальном направлении в составе ножек мозга.

Ядра и функции таламуса

В таламусе выделяют до 120 ядер серого вещества . По месту их расположения ядра делят на передние, латеральные и медиальные группы. В задней части латеральной группы ядер таламуса выделяют подушку, медиальное и латеральное коленчатые тела.

анализ, отбор и передача в кору головного мозга сенсорных сигналов , поступающих к нему из большинства сенсорных систем ЦНС. В этой связи таламус называют воротами, через которые в поступают различные сигналы ЦНС. По выполняемым функциям ядра таламуса делятся на специфические, ассоциативные и неспецифические.

Специфические ядра характеризуются несколькими общими особенностями. Все они получают сигналы от вторых нейронов длинных восходящих афферентных путей, проводящих в кору мозга соматосенсорные, зрительные, слуховые сигналы. Эти ядра, иногда называемые сенсорными, передают обработанные сигналы в хорошо очерченные области коры — соматосенсорную, слуховую, зрительную сенсорные области, а также в премоторную и первичную моторные области коры. С нейронами этих областей коры специфические ядра таламуса имеют реципрокные связи. Нейроны ядер дегенерируют при разрушении (удалении) специфических областей коры, в которые они проецируются. При низкочастотной стимуляции специфических таламических ядер регистрируется усиление активности нейронов в тех областях коры, в которые нейроны ядер посылают сигналы.

К специфическим ядрам таламуса подходят волокна проводящих путей от коры, и ядер ствола мозга. По этим путям могут передаваться как возбуждающие, так и тормозные влияния на активность нейронов ядер. Благодаря таким связям кора мозга может регулировать потоки идущей к ней информации и отбирать наиболее значимую в данный момент. При этом кора может блокировать передачу сигналов одной модальности и облегчать передачу другой.

Среди специфических ядер таламуса имеются также несенсорные ядра. Они обеспечивают обработку и переключение сигналов не от чувствительных восходящих путей, а от других областей мозга. К нейронам таких ядер поступают сигналы от красного ядра, базальных ганглиев, лимбической системы, зубчатого ядра мозжечка, которые после их обработки проводятся к нейронам моторной коры.

Ядра передней группы таламуса участвуют в передаче сигналов от мамиллярных тел к лимбической системе, обеспечивая круговую циркуляцию нервных импульсов по кольцу: лимбическая кора — гиппокамп — — миндалевидное тело — таламус — лимбическая кора. Нейронную сеть, сформированную этими структурами, называют кругом (кольцом) Пайпеца. Циркуляция сигналов по структурам этого круга связана с запоминанием новой информации и формированием эмоций — эмоциональное кольцо Пайпеца.

Ассоциативные ядра таламуса расположены преимущественно медиодорсально, латерально и в ядре подушки. Они отличаются от специфических тем, что к их нейронам не поступают сигналы из чувствительных восходящих путей, а поступают сигналы уже обработанные в других нервных центрах и ядрах таламуса. Ассоциативность нейронов этих ядер выражается в том, что на один и тот же нейрон ядра приходят сигналы разных модальностей. Изменение активности нейронов ядер может быть связано (ассоциировано) с поступлением разнородных сигналов из разных источников (например, от центров, обеспечивающих зрительную, тактильную и болевую чувствительность).

Нейроны ассоциативных ядер являются полисенсорными и обеспечивают возможность осуществления интегративных процессов, в результате которых формируются обобщенные сигналы, передающиеся в ассоциативные области коры лобной, теменной и височной долей мозга. Потоки этих сигналов способствуют осуществлению корой таких психических процессов, как узнавание предметов и явлений, согласование речевых, зрительных и двигательных функций, формирование представления о позе тела, трехмерности пространства и положении в нем тела человека.

Неспецифические ядра таламуса представлены преимущественно интраламинарными, центральными и ретикулярными группами ядер таламуса. Они состоят из мелких нейронов, к которым по многочисленным синаптическим связям поступают сигналы от нейронов других ядер таламуса, лимбической системы, базальных ядер, гипоталамуса, ствола мозга. По чувствительным восходящим путям к неспецифическим ядрам поступает сигнализация от болевых и температурных рецепторов, а по сетям нейронов ретикулярной формации — сигнализация практически от всех других сенсорных систем .

Эфферентные пути от неспецифических ядер идут ко всем зонам коры как непосредственно, так и через другие талами- ческие и ретикулярные ядра. От неспецифических ядер таламуса начинаются также нисходящие пути к стволу мозга. При повышении активности неспецифических ядер таламуса (например, при электрической стимуляции в эксперименте) регистрируется диффузное повышение нейронной активности практически во всех областях коры больших полушарий.

Принято считать, что неспецифические ядра таламуса благодаря своим многочисленным нейронным связям обеспечивают взаимодействие, координацию работы различных областей коры и других отделов головного мозга. Они оказывают модулирующее влияние на состояние активности нервных центров, создают условия для их оптимальной настройки на выполнение работы.

Нейроны различных ядер таламуса оказывают эффекты через высвобождение ГАМК из нервных окончаний, формирующих синапсы на нейронах бледного шара, нейронах локальных цепей, нейронах ретикулярного ядра латерального коленчатого тела; возбуждающие глутамат и аспартат в кортикоталамических, мозжечковых терминалях; таламокортикальных проекционных нейронах. Нейронами секретируются несколько нейропептидов преимущественно в окончаниях восходящих трактов (субстанция Р, сомагостатин, нейропептид Y, энкефалин, холецистокинин).

Метаталамус

Метаталамус включает два таламических ядра — медиальное коленчатое тело (MKT) и латеральное коленчатое тело (ЛКТ).

Ядро медиального коленчатого тела является одним из ядер слуховой системы. Его получают афферентные волокна из латерального лемниска прямо или более часто, после их синаптического переключения на нейронах нижних холмиков. Эти слуховые волокна достигают MKT через соединительную ветвь нижних холмиков. MKT получает также волокна обратной связи из первичной слуховой коры височной области. Эфферентный выход ядра MKT формирует слуховую радиацию внутренней капсулы, волокна которой следуют к нейронам первичной слуховой коры (поля 41, 42).

Нейроны MKT вместе с нейронами нижних холмиков среднего мозга формируют нейронную сеть, выполняющую функцию первичного центра слуха. В нем осуществляется недифференцированное восприятие звуков, их первичный анализ и использование для формирования настораживания, повышения внимания и организации рефлекторного поворота глаз и головы в сторону неожиданного источника звука.

Ядро латерального коленчатого тела является одним из ядер зрительной системы. Его нейроны получают афферентные волокна от ганглиозных клеток обоих сетчаток по зрительному тракту. Ядро ЛКТ представлено нейронами, расположенными в нескольких слоях (пластинках). Сигналы из сетчатки поступают в ЛКТ так, что ипсилатеральная сетчатка проецируется к нейронам 2, 3 и 5-го слоев; контралатеральная — к нейронам 1,4 и 6-го слоев. К нейронам ЛКТ поступают также волокна обратной связи из первичной зрительной коры затылочной доли (поле 17). Нейроны ЛКТ, получив и обработав зрительные сигналы сетчатки, посылают сигналы по эфферентным волокнам, формирующим зрительную радиацию внутренней капсулы в первичную зрительную кору затылочной доли. Некоторые волокна проецируются в ядро подушки и вторичную зрительную кору (поля 18 и 19).

Латеральные коленчатые тела вместе с верхними холмиками относят к подкорковым зрительным центрам. В них осуществляется недифференцированное восприятие света, его первичный анализ и использование для формирования настораживания, повышения внимания и организации рефлекторного поворота глаз и головы в сторону неожиданного источника света.

Внутренняя капсула представляет собой широкий плотный пучок афферентных и эфферентных нервных волокон, соединяющих ствол и кору больших полушарий мозга. Волокна внутренней капсулы продолжаются рострально до радиации мозга и каудально до ножек мозга. Во внутренней капсуле проходят волокна таких важнейших нейронных нисходящих путей, как кортикоспинальный, кортикобульбарный, кортикорубральный, кортикоталамический, лобномостовой, кортикотекальный, кортиконигральный, кортикотегментальный и волокна восходящих таламокоркового, слухового и части зрительного путей.

Во внутренней капсуле тесно располагаются кортикоталамические и таламокортикальные волокна, поэтому при кровоизлияниях и заболеваниях этой области мозга возникают нарушения, характеризующиеся большим разнообразием, чем при повреждении какой-либо другой области ЦНС. Они могут проявиться развитием контралагеральной гемиплегии, потерей чувствительности на половине тела, потерей зрения на контралатеральной стороне (гемианопсия) и потерей слуха (гемигипоакузия).

Функции таламуса и последствия их нарушении

Таламус играет центральную роль в обработке сенсорной информации поступающей к . Все сенсорные сигналы соматической и других видов чувствительности, за исключением обоняния, проходят к коре через таламус. Как уже упоминалось, сенсорная информация направляется таламусом в кору по трем каналам : в строго специфичные сенсорные области — от специфических ядер, MKT, ЛKT; в ассоциативные области коры — от ассоциативных ядер и ко всей коре — от неспецифических ядер таламуса.

Таламус участвует в частичном восстановлении таких сенсорных ощущений, как болевые, температурные и грубое осязание, которые исчезают после повреждения сенсорной коры. При этом восстановление ощущения боли, сигналы которого передаются волокнами С-типа, проявляется ноющей, жгучей, нс адресованной к какой-либо части тела болью. Предполагают, что центром таких болевых ощущений является таламус, в то время как ощущение острой, хорошо локализованной боли, передаваемой волокнами А-типа, является соматосенсорная кора. Это болевое ощущение исчезает после повреждения или удаления данной области коры.

У больных с острыми нарушениями кровообращения в области таламуса могут развиться признаки таламического синдрома . Одним из его проявлений является потеря всех видов чувствительности на контралатеральной половине тела по отношению к стороне поврежденного таламуса. Однако через некоторое время грубые ощущения боли, осязания и температуры восстанавливаются.

Одной из важнейших функций таламуса является интеграция сенсорной и моторной деятельности . Ее основой является поступление в таламус не только сенсорных, но и сигналов из моторных областей мозжечка, базальных ганглиев, коры. Предполагается, что в вентральном латеральном ядре таламуса локализован треморогенный центр.

Таламус, в котором находится часть нейронов ретикулярной формации ствола мозга, играет центральную роль в поддержании сознания и внимания. При этом его роль в осуществлении реакций активации и пробуждения реализуется при участии холинергических, серотонинергических, норадренергических и гнетаминергических нейромедиаторных систем, которые начинаются в стволе мозга (ядро шва, голубоватое пятно), основании переднего мозга или гипоталамусе.

Через связи медиального таламуса с прсфронтальной корой таламус участвует в формировании аффективного поведения. Удаление префронтальной коры или ее связей с дорзомедальным ядром таламуса вызывает изменения личности, характеризующиеся потерей инициативы, вялостью аффективной реакции, индифферентностью к боли.

Через связи передних таламических и других ядер таламуса с гипоталамусом и лимбическими структурами мозга обеспечивается их участие в механизмах памяти, контроля висцеральных функций, эмоционального поведения. При заболеваниях таламуса могут развиться различные типы нарушений памяти от мягкой забывчивости с рассеянностью до выраженной амнезии.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.