Синапсы и медиаторы центральной нервной системы. ВОпрос25. Медиаторы нервной системы, их функциональное значение Медиаторы цнс

По химическому строению медиаторы являются неоднородной группой. В нее входят эфир холина (ацетилхолин); группа моноаминов, включающая катехоламины (дофамин, норадреналин и адреналин); индолы (серотонин) и имидазолы (гистамин); кислые (глутамат и аспартат) и основные (ГАМК и глицин) аминокислоты; пурины (аденозин, АТФ) и пептиды (энкефалины, эндорфины, вещество Р). К этой же группе примыкают вещества, которые не могут быть классифицированы как истинные нейромедиаторы - стероиды, эйкозаноиды и ряд АФК, прежде всего N0.

Для решения вопроса о нейромедиаторной природе какого-либо соединения используется ряд критериев. Основные из них изложены ниже.

  1. Вещество должно накапливаться в пресинаптических окончаниях, высвобождаться в ответ на приходящий импульс. Пресинаптическая область должна содержать систему синтеза этого вещества, а постсинаптическая зона - обнаруживать специфический рецептор для данного соединения.
  2. При стимуляции пресинаптической области должно происходить Са-зависимое выделение (путем экзоцитоза) этого соединения в межсинаптическую щель, пропорциональное силе стимула.
  3. Обязательная идентичность эффектов эндогенного нейромедиатора и предполагаемого медиатора при его аппликации на клетку-мишень и возможность фармакологического блокирования эффектов предполагаемого медиатора.
  4. Наличие системы обратного захвата предполагаемого медиатора в пресинаптические терминали и/или в соседние астроглиальные клетки. Возможны случаи, когда обратному захвату подвергается не сам медиатор, а продукт его расщепления (например, холин после расщепления ацетилхолина ферментом ацетилхолинэстеразой).

Влияние лекарственных препаратов на различные этапы медиаторной функции в синаптической передаче

Модифицирующее влияние

Результат
воздействия

Синтез
медиатора

Добавка предшественника
Блокада обратного захвата
Блокада ферментов синтеза


Накопление

Торможение захвата в везикулы Торможение связывания в везикулах

Выделение
(экзоцитоз)

Стимуляция тормозных ауторецепторов Блокада ауторецепторов
Нарушение механизмов экзоцитоза



Действие

Эффекты агонистов на рецепторы

на рецепторы

Блокада постсинаптических рецепторов

Разрушение
медиатора

Блокада обратного захвата нейронами и/или глией
Торможение разрушения в нейронах

Торможение разрушения в синаптической щели

Применение различных методов тестирования медиаторной функции, в том числе и самых современных (иммуногистохимических, рекомбинантных ДНК и др.), затруднено из-за ограниченной доступности большинства индивидуальных синапсов, а также из-за ограниченности набора средств направленного фармакологического воздействия.

Попытка дать определение понятия «медиаторы» наталкивается на ряд трудностей, поскольку в последние десятилетия значительно расширился список веществ, которые выполняют в нервной системе ту же сигнальную функцию, что и классические медиаторы, но отличаются от них по химической природе, путям синтеза, рецепторам. Прежде всего, сказанное относится к обширной группе нейропептидов, а также к АФК, и в первую очередь к оксиду азота (нитроксиду, N0), для которого медиаторные свойства описаны достаточно хорошо. В отличие от «классических» медиаторов, нейропептиды, как правило, имеют больший размер, синтезируются с невысокой скоростью, накапливаются в небольших концентрациях и связываются с рецепторами, обладающими низким специфическим сродством, кроме того, они не имеют механизмов обратного захвата пресинаптической терминалью. Продолжительность эффекта нейропептидов и медиаторов также значительно различается. Что касается нитроксида, то, несмотря на его участие в межклеточном взаимодействии, по ряду критериев он может быть отнесен скорее не к медиаторам, а ко вторичным посредникам.

Первоначально считалось, что нервное окончание может содержать только один медиатор. К настоящему времени показана возможность наличия в терминали нескольких медиаторов, высвобождающихся совместно в ответ на импульс и воздействующих на одну клетку-мишень - сопутствующие (сосуществующие) медиаторы (комедиаторы, котрансмиттеры). При этом происходит накопление разных медиаторов в одной пресинаптической области, но в разных везикулах. Примером комедиаторов могут служить классические медиаторы и нейропептиды, которые различаются местом синтеза и, как правило, локализуются в одном окончании. Высвобождение комедиаторов происходит в ответ на серию возбуждающих потенциалов определенной частоты.

В современной нейрохимии кроме нейромедиаторов выделяют вещества, модулирующие их эффекты, - нейромодуляторы. Их действие носит тонический характер и более продолжительно во времени, чем действие медиаторов. Эти вещества могут иметь не только нейрональное (синаптическое), но и глиальное происхождение и не обязательно опосредоваться нервными импульсами. В отличие от нейромедиатора модулятор действует не только на постсинаптическую мембрану, но и на другие части нейрона, в том числе и внутриклеточно.

Различают пре- и постсинаптическую модуляцию. Понятие «нейромодулятор» является более широким, чем понятие «нейромедиатор». В ряде случаев медиатор может являться и модулятором. Например, норадреналин, высвобождающийся из симпатического нервного окончания, действует как нейромедиатор на а1-рецепторы, но как нейромодулятор - на а2-адренорецепторы; в последнем случае он опосредует торможение последующей секреции норадреналина.

Вещества, осуществляющие медиаторные функции, различаются не только по химическому строению, но и по тому, в каких компартментах нервной клетки происходит их синтез. Классические низкомолекулярные медиаторы синтезируются в аксонной терминали и включаются в маленькие синаптические пузырьки (50 нм в диаметре) для хранения и высвобождения. N0 также синтезируется в терминали, но, поскольку не может быть упакован в пузыръки, то сразу же диффундирует из нервного окончания и оказывает воздействие на мишени. Пептидные нейромедиаторы синтезируются в центральной части нейрона (перикарионе), упаковываются в большие везикулы с плотным центром (100-200 нм в диаметре) и транспортируются с помощью аксонального тока к нервным окончаниям.

Ацетилхолин и катехоламины синтезируются из циркулирующих в крови предшественников, тогда как аминокислотные медиаторы и пептиды в конечном счете образуются из глюкозы. Как известно, нейроны (как и другие клетки организма высших животных и человека) не могут синтезировать триптофан. Поэтому первым шагом, ведущим к началу синтеза серотонина, является облегченный транспорт триптофана из крови в мозг. Эта аминокислота, как и другие нейтральные аминокислоты (фенилаланин, лейцин и метионин), транспортируется из крови в мозг специальными переносчиками, относящимися к семейству переносчиков монокарбоновых кислот. Таким образом, одним из важных факторов, определяющих уровень серотонина в серотонинергических нейронах, является относительное по сравнению с другими нейтральными аминокислотами количество триптофана в пище. Например, добровольцы, которых кормили пищей с низким содержанием белка в течение одного дня, а затем давали смесь аминокислот, не содержавшую триптофана, демонстрировали агрессивное поведение и изменение цикла «сон-бодрствование», что связано со снижением уровня серотонина в мозге.

Главная функция ЦНС - обработка внешних и внутренних потоков информации, направленная на удовлетворение потребностей организма. Только при ясном понимании интегративной функции мозга возможно эффективное лечение нервных и психических заболеваний. Клинический опыт, в свою очередь, способствует прояснению функций мозга: безуспешность лечения или неожиданные побочные эффекты лекарственных средств часто служат поводом для поиска ранее неизвестных молекулярных и клеточных механизмов. Одной из самых волнующих проблем современной нейрофармакологии остается связь между процессами, протекающими на уровне нейрона, с одной стороны, и поведением и патологическими нарушениями нервной деятельности - с другой. Общий подход к этой проблеме основан на следующем принципе: препараты, действующие на поведение и эффективные при нервных и психических заболеваниях, либо облегчают, либо затрудняют синаптическую передачу в ЦНС.

Исследования ЦНС включают разные уровни: молекулярный, клеточный, системный и поведенческий. В нейрофармакологии ведущими остаются исследования на молекулярном уровне. Эти исследования позволяют выяснить те ключевые механизмы синаптической передачи, на которые действуют лекарственные средства. Мишенями для этих средств могут быть:

1) ионные каналы, которые обеспечивают реакцию нейрона на медиатор - возбуждение или торможение, 2) рецепторы медиаторов, 3) внутримембранные и внутриклеточные молекулы, которые преобразуют и передают сигнал от рецептора к внутриклеточным эффекторным системам для быстрого кратковременного возбуждения или торможения нейрона либо для продолжительного изменения его состояния - за счет, например, изменения экспрессии генов (Neyroz et al., 1993; Gudermann et al., 1997), 4) белки-переносчики, которые обеспечивают обратный захват медиатора нервными окончаниями, а затем синаптическими пузырьками (Blakely et al., 1994; Amara and Sonders, 1998; Fairman and Amara, 1999); в этих двух процессах участвуют разные белки-переносчики, см. Liu and Edwards (1997).

Исследования на молекулярном уровне предоставляют новые методические возможности (в частности, фармакологический анализ) для изучения процессов на клеточном, системном и поведенческом уровнях и их генетических основ. К настоящему времени известны молекулярные механизмы большинства процессов, протекающих в нейроне. Как известно, электрическую активность нейрона определяет изменение проницаемости его многочисленных ионных каналов. Теперь стали известны многие молекулярные механизмы, от которых зависит избирательный ток главных катионов - Na*, К+, Са и аниона СГ. Ионные каналы подразделяются на потенциалзависимые (рис. 12.2) и хемочувствительные (рис. 12.3). Потенциалзависимые каналы обеспечивают быстрое изменение ионных токов, необходимое для возникновения и распространения нервного импульса, а также для выделения медиатора в ответ на возбуждение пресинаптического окончания (Catterall, 1988,1993). Молекулярно-генетическими методами выявлено сходство в строении главных катионных каналов (рис. 12.2, А). Главная субъединица быстрого натриевого и медленного кальциевого каналов состоит из четырех гомологичных трансмембранных доменов, каждый из которых включает шесть трансмембранных сегментов. Калиевые каналы более разнообразны, что подтверждено методом рентгеноструктурного анализа (Doyle et al., 1998). Главная субъединица ряда потенциалзависимых калиевых каналов состоит из единственного домена, который включает 6 трансмембранных сегментов (рис. 12.2, В). Калиевые каналы аномального выпрямления (Kir) также образованы единственным доменом, но он содержит только пятый и шестой трансмембранные сегменты - между ними находится внутримембранная петля, выходящая на внешнюю поверхность мембраны и формирующая наружное устье канала. Эти две структурные формы образуют различные гетероолигомеры, что создает дополнительные возможности для управления калиевыми каналами - в ответ на изменение мембранного потенциала, действие медиатора, а также через систему внутриклеточных белков или за счет посттрансляционных модификаций (Krapivinsky etal., 1995). Изучение различных структурных форм калиевых каналов (Jan etal., 1997; Doyle etal., 1998) позволяет выяснить, каким образом лекарственные средства, токсины или электростимуляция действуют на электрическую активность нейрона, придавая ему, например, спонтанную активность или вызывая его гибель вследствие постоянного пребывания калиевых каналов в открытом состоянии (Adams and Swanson, 1994).

Различные варианты калиевых каналов (калиевые каналы задержанного выпрямления, кальцийзависимые калиевые каналы и калиевые каналы гиперполяризующего тока), которые регулируются системой вторых посредников, обеспечивают в синапсах ЦНС сложные модулирующие эффекты (Nicoll et al., 1.99ц-Malenka and Nicoll, 1999).

Исследования на клеточном уровне позволяют выяснить, какие именно нейроны и какие их ближайшие синаптические контакты имеют отношение к поведенческим эффектам лекарственного препарата. Такие исследования устанавливают характер взаимодействия нейронов - возбуждение, торможение или более сложные формы синаптических эффектов (Aston-Jones etal., 1999; Brown etal., 1999).

Системный уровень объединяет данные о структуре и функции медиаторных систем, то есть устанавливает связь между нейронами, которые синтезируют и выделяют медиатор, и поведенческим эффектом, который этот медиатор вызывает. Связей «медиатор-поведение» найдено достаточно много, хотя ни в одном из этих случаев нельзя утверждать, что за данный вид поведения отвечают только те нейроны, которые вырабатывают соответствующий медиатор.

Рисунок 12.2. Строение потенциалзависимых ионных каналов. А. Альфа-субъединица быстрого натриевого и медленного кальциевого каналов состоит из четырех гомологичных доменов, каждый из которых включает шесть трансмембранных сегментов; между пятым и шестым трансмембранными фрагментами находится внутримембранная петля. Б. В состав медленного кальциевого канала входят также мелкие дополнительные субъединицы а2, Р, у и 6. Субъединицы а2 и 8 соединены дисульфидной связью (на рисунке не показана). В структуре натриевого канала тоже есть дополнительные регуляторные субъединицы. В. Главная субъединица потенциалзависимого калиевого канала задержанного выпрямления состоит из единственного трансмембранного домена - аналогичного соответствующим доменам натриевого и кальциевого каналов. Предполагаемая структура калиевых каналов аномального выпрямления К|г включает субъединицу, состоящую издомена.в котором представлены только 5-й и 6-й трансмембранные сегменты. Дополнительные р-субъединицы модулируют активность потенциалзависимых калиевых каналов (Kv). Эти два типа структур могут образовывать различные гетероолигомеры. Krapivinsky et al., 1995.

Рисунок 12.3. Строение рецепторов, сопряженных с ионными каналами. Такие рецепторы состоят из четырех или пяти субъединиц, окружающих пору ионного канала (справа). Каждая субъединица включает 4 трансмембранных домена. Предполагают, что такую структуру имеют N-холинорецепторы, 5-НТ3-рецепторы, ГАМКд-рецепторы и глициновые рецепторы. Глутаматные рецепторы имеют несколько другое строение.

Исследования на поведенческом уровне позволяют понять интегративные процессы - то есть отнести ту или иную группу нейронов к специализированным нейронным контурам, нейронным ансамблям или распределенным системам, ответственным за реализацию поведения в целом - от элементарных рефлексов до сложных форм произвольной активности. Моделирование психических заболеваний на животных имеет в своей основе следующий принцип: состояние животного и состояние человека можно считать аналогичными, если им соответствуют аналогичные изменения физиологических показателей: ритма сердца, дыхания, двигательных реакций и т. д. (Kandel, 1998).

Определение центральных медиаторов

Для понимания функций центральных медиаторов важно определить, какие вещества к ним относятся. Критерии, которым должны соответствовать медиаторы ЦНС, в принципе, те же, что и для вегетативной нервной системы.

  • Медиатор должен присутствовать в пресинаптическом нейроне и его окончании. Более строгая формулировка этого условия требует доказательств того, что пресинаптический нейрон синтезирует медиатор, а не накапливает его из внеклеточного пространства. Соответствие данному критерию проверяют методами иммуноцитохимии, флюоресцентной гибридизации in situ, при помощи биохимического анализа ткани мозга или субклеточных фракций.

В опытах на животных эти методы позволяют проверить, исчез ли предполагаемый медиатор из синаптической области после хирургического или химического разрушения пресинаптических нейронов. Соответствие критерию подтверждает присутствие в постсинаптических нейронах мРНК, кодирующей рецепторы данного медиатора.

  • Медиатор должен выделяться при возбуждении пресинаптического нейрона. Соответствие данному критерию проверяют в экспериментах in vivo: при электрической стимуляции пресинаптического волокна предполагаемый медиатор должен появиться в области синапса. Раньше для этого применяли периодическое определение состава омывающего синапс перфузата в течение длительного времени, однако сегодня появились методы микродиализа и микроэлектродной полярографии, позволяющие с высокой точностью уловить присутствие аминов и аминокислот в ограниченном объеме и за короткое время. Появление медиатора в ответ на ионофоретическую или электрическую стимуляцию можно проследить in vitro - на срезах мозга или субклеточных фракциях пресинаптических окончаний. Механизм выделения всех медиаторов, в том числе и предполагаемого выделения медиаторов из дендритов (Morris et al., 1998), запускается изменением мембранного потенциала и требует поступления в пресинаптическое окончание ионов кальция. Ионы натрия не играют в этом процессе какой-либо роли, поскольку ни внеклеточная концентрация натрия, ни тетродотоксин (блокатор быстрых натриевых каналов) на выделение медиаторов не влияют.
  • Аппликация медиатора на клетки-мишени должна вызывать тот же эффект, что и стимуляция пресинаптического волокна. Предполагаемый медиатор и стимуляция пресинаптического волокна должны действовать на клетку-мишень одинаково: либо тормозить, либо возбуждать ее. Для более строгого доказательства требуется показать, что как стимуляция пресинаптического нейрона, так и аппликация предполагаемого медиатора вызывают в постсинаптическом нейроне одинаковые ионные токи. Соответствие данному критерию можно проверить и фармакологически: эффект стимуляции пресинаптического нейрона и эффект аппликации предполагаемого медиатора должны устраняться одинаковой дозой одного и того же блокатора. При этом данный блокатор не должен подавлять ответ клетки-мишени на стимуляцию других пресинаптических волокон и на аппликацию других предполагаемых медиаторов. Наконец, эффект предполагаемого медиатора должен совпадать с эффектом его синтетического агониста.

Многочисленные исследования, особенно посвященные пептидам, показывают, что центральные синапсы могут содержать не один, а несколько медиаторов (Hokfelt et al., 2000). Строгих доказательств пока нет, тем не менее предполагают, что совместно локализованные медиаторы вместе высвобождаются и вместе действуют на постсинаптическую мембрану (Derrick and Martinez, 1994; Jin and Chavkin, 1999). Если же сигналы передает не один медиатор, то единственный агонист не может точно воспроизвести эффект активации синапса, а единственный блокатор не может полностью этот эффект устранить.

Открытие центральных медиаторов

Первыми кандидатами на роль центральных медиаторов стали ацетилхолин и норадреналин - как хорошо известные медиаторы вегетативной и соматической нервной системы. В 1960-х гг. возникло предположение, что медиаторами ЦНС могут быть серотонин, адреналин и дофамин. Гистохимические, биохимические и фармакологические исследования в целом подтвердили их медиаторную роль, хотя и не обнаружили полного соответствия всем критериям, определяющим медиатор. В начале 1970-х гг. медиаторами были признаны ГАМК, глицин и глутамат - благодаря появлению избирательных, высокоактивных блокаторов. Проходившие тогда же исследования гормонов гипоталамо-гипофизарной системы сопровождались совершенствованием методов выделения, очищения, определения аминокислотной последовательности и синтеза все новых и новых нейропептидов (Hokfelt et al., 2000). Иммуногистохимические исследования показали, что пептиды могут действовать как медиаторы ЦНС. Адаптация биологических проб, которые ранее применялись в исследованиях гормонов гипофиза, к другим моделям (например, сокращению гладких мышц), а затем внедрение иммунохимических методов привели к открытию эндогенных пептидов, действующих на опиатные рецепторы (гл. 23). Затем был предпринят поиск эндогенных соединений, способных связываться с бензодиазепиновыми рецепторами (Costa and Guidotti, 1991). Сравнительно недавно были выявлены эндогенные лиганды каннабиноидных рецепторов - амиды жирных кислот (Piomelli etal., 1998).

Изучение рецепторов

До недавнего времени о свойствах центральных рецепторов судили по связыванию меченых лигандов, а также по электрическим или биохимическим процессам, вызванным их активацией in vivo и in vitro. Изучение связывания меченых лигандов позволяет оценить количество рецепторов в том или ином отделе ЦНС, проследить их появление в филогенезе и онтогенезе, а также выяснить, как различные физиологические и фармакологические вмешательства действуют на количество рецепторов и их сродство к лигандам (Dumont et al., 1998; Redrobeetal., 1999).

Электрофизиологическими методами оценивают реакцию нейрона на медиатор. Например, регистрируют изменение электрической активности нейрона в ответ на ионофоретическую аппликацию медиатора. Метод локальной фиксации (patch-clamp) позволяет проследить реакцию на медиатор отдельных ионных каналов. Электрофизиологические методы дают возможность не только описать, но и измерить эффекты предполагаемого медиатора(Jardemarketal., 1998). Биохимическими методами изучают рецепторы, активация которых вызывает ферментативную реакцию, например синтез второго посредника.

Современные методы молекулярной биологии позволили выделить мРНК, кодирующие рецепторы почти всех известных медиаторов. Введение такой мРНК в чужеродные клетки (ооциты лягушки или клетки млекопитающих) вызывает в них экспрессию рецепторов, свойства которых оценивают по эффектам лигандов или синтезу вторых посредников. Молекулярно-генетическими методами установлены два основных типа рецепторов, различных по структуре и функции. Рецепторы, сопряженные с ионными каналами (ионотропные рецепторы, рецепторы-каналы, хемочувствительные каналы) образованы несколькими субъединицами. Каждая субъединица включает 4 трансмембранных гидрофобных домена из 20-25 аминокислот (рис. 12.3). Кроме того, у таких рецепторов имеются участки для обратимого фосфорилирования, а также участки, реагирующие на изменение мембранного потенциала. К подобным рецепторам относятся N-холинорецепторы (гл. 2 и 7), рецепторы аминокислот И ГАМК, глицина, глутамата и аспарта-та, а также 5-НТ3-рецепторы (гл. 11).

Второй главный тип рецепторов - рецепторы, сопряженные с G-белками (гл. 2). Они состоят из единственной субъединицы с семью трансмембранными доменами, соединенными тремя внеклеточными и тремя внутриклеточными петлями разной длины (рис. 12.4). Стимуляция таких рецепторов приводит к активации G-белков (гетеротримерных ГТФ-связывающих белков), что, в свою очередь, вызывает активацию либо ингибирование внутриклеточных эффекторных ферментов (например, аденилатциклазы или фосфолипазы С) или изменение функционирования ионных каналов (например, медленных кальциевых каналов или хемочувствительных калиевых каналов). Кроме того, сами эти рецепторы могут фосфорилироваться в нескольких участках. Механизмы всех этих процессов были подробно изучены с помощью молекулярно-генетических методов. К подобным рецепторам относятся М-холинорецепторы, ГАМКв-рецепторы, некоторые глутаматные рецепторы, а также некоторые рецепторы аминов и нейропептидов. Трансфекция клеток с целью экспрессии в них мРНК, кодирующей неизвестные типы рецепторов, привела к открытию новых нейропептидов (Reinscheid et al., 1995). В ЦНС существуют также рецепторы еще одного типа - рецепторы с собственной ферментативной активностью, например гуанилатциклазной (гл. 2).

Рисунок 12.4. Строение рецепторов, сопряженных с G-белками. Такие рецепторы состоят из единственной субъединицы с семью трансмембранными доменами. Участок связывания низкомолекулярных медиаторов погружен в мембрану; вторая и третья внутриклеточные петли взаимодействуют с G-белком (гл. 2).

В центральных синапсах присутствуют также белки-пере-носчики, обеспечивающие обратный захват медиатора - из синаптической щели в аксоплазму пресинаптического окончания, и из аксоплазмы в синаптические пузырьки (рис. 12.5). Предполагают, что они включают 12 трансмембранных доменов - так же как и белки - переносчики глюкозы и аденилатциклаза млекопитающих (Tang and Gilman, 1992).

Реакция постсинаптического нейрона на медиатор определяется его возбудимостью и количеством рецепторов медиатора. Продолжительный избыток медиатора (или его аналога) ведет к снижению количества рецепторов, а следовательно, и чувствительности к медиатору (десенситизации). Напротив, при дефиците медиатора количество рецепторов возрастает, и чувствительность к медиатору повышается. Эти адаптивные изменения особенно важно учитывать при лечении хронических заболеваний ЦНС: действие препарата при однократном и длительном приеме может сильно отличаться. Сходные изменения действуют и на пресинаптическом уровне, затрагивая синтез, хранение, высвобождение и обратный захват медиатора.

Медиаторы, нейрогормоны и нейромодуляторы

Медиаторы

Из приведенных выше критериев следует, что медиатор - это вещество, которое нейрон синтезирует, выделяет и использует для передачи сигнала постсинаптической клетке-мишени. Действие медиатора может быть направлено как непосредственно на электрическую активность клетки-мишени, так и на протекающие в ней биохимические процессы, от которых зависит ее ответ на другие синаптические входы. К тому же эффект медиатора может зависеть от состояния клетки-мишени, то есть не столько вызывать возбуждение или торможение, сколько усиливать эти процессы (Bourne and Nicoll, 1993). Таким образом, эффект любого медиатора необходимо рассматривать в контексте нейронной системы, включающей данный синапс. Если один нейрон действует на несколько клеток-мишеней, действие это может быть как разным, так и одинаковым - все зависит от свойств постсинаптических рецепторов и способа, которым сигнал передается от рецептора к эффекторным механизмам клетки.

Известны два классических электрофизиологических эффекта медиаторов: 1) возбуждение: открывание ионных каналов приводит ко входу катионов и к деполяризации, мембранное сопротивление при этом снижается, 2) торможение: открывание ионных каналов приводит к таким ионным токам, в результате которых развивается гиперполяризация, мембранное сопротивление также снижается. Но есть и другие, «неклассические» варианты действия медиаторов. Как деполяризация, так и гиперполяризация могут быть обусловлены, напротив, закрыванием ионных каналов; мембранное сопротивление в этом случае повышается (Shepherd, 1998). Некоторые медиаторы (моноамины и некоторые пептиды) сами по себе мало влияют или вообще не влияют на ионные токи и мембранный потенциал, но при этом могут усиливать или подавлять реакцию клетки-мишени на классический - возбуждающий или тормозный - медиатор. Такой эффект назван модулирующим; предполагается, что существуют разные его варианты (Nicoll etal., 1990; Foote and Aston-Jones, 1995). Каковы бы ни были механизмы модулирующего действия, оно существенно отличается от вышеописанных быстрых и точных возбуждающих и тормозных влияний - к которым, как считали раньше, сводятся все варианты синаптической передачи. Возникло даже сомнение в том, что вещества, оказывающие модулирующее влияние, можно причислять к медиаторам. Кратко остановимся на некоторых из таких веществ и механизмах их действия.

Нейрогормоны

Некоторые клетки гипоталамуса были названы нейросекреторными - поскольку они одновременно представляют собой и нейроны (получают синаптические входы от нейронов ЦНС), и эндокринные клетки (высвобождают вещества непосредственно в кровь). Вещества, выделяемые такими клетками, стали называть нейрогормонами. Примером могут быть и АДГ, которые вырабатываются в нейронах гипоталамуса, хранятся в окончаниях их аксонов в нейрогипофизе и отсюда секретируются в кровь. Вместе с тем стало известно, что эти нейроны гипоталамуса образуют синапсы на других нейронах (Hokfelt et al., 1995, 2000), а роль медиатора в таких синапсах, как показали цитохимические исследования, выполняют окситоцин и АДГ. Таким образом, эти и другие вырабатываемые гипоталамусом вещества можно называть «нейрогормонами» лишь постольку, поскольку они способны выделяться в кровь (например, в нейрогипофизе), однако этот термин ни в коей мере не отражает всех их функций.

Нейромодуляторы

Флори (Florey, 1967) назвал нейромодуляторами соединения, которые действуют на нейроны иначе, чем типичные медиаторы. Модуляторы выделяются вне синапса, но тем не менее влияют на возбудимость нервных клеток. Флори предполагал, что роль нейромодуляторов могут выполнять С02 и аммиак, которые высвобождаются из активных нейронов и глии. В настоящее время считают, что нейромодуляторным действием обладают стероидные гормоны, нейростероиды (Baulieu,1998), аденозин и другие пурины, простагландины и другие производные арахидоновой кислоты, а также NO (Gaily et al., 1990). Вторые посредники. В некоторых случаях реакция постсинаптического нейрона на медиатор обусловлена образованием вторых посредников, наиболее известными из которых служат цАМФ, цГМФ и продукты фосфоинозитидной системы (гл. 6, 7,10,11). Вместе с тем для нейронов головного мозга бывает методически трудно доказать, что изменение концентрации этих веществ непосредственно предшествует постсинаптическому потенциалу, а также необходимо и достаточно для его возникновения. Возможно, вторые посредники только способствуют возникновению постсинаптического потенциала - активируя реакцию фосфорилирования белков и тем самым запуская сложный каскад молекулярных событий. В результате меняются свойства мембраны и белков цитоплазмы, от которых зависит возбудимость нейрона (Greengard et al., 1999). Именно на эти механизмы могут действовать препараты, усиливающие или ослабляющие эффекты медиаторов (см. ниже).

Нейротрофические факторы

Нейроны, астроциты и микроглия, а также временно появляющиеся в ткани мозга (например, при воспалении) клетки иммунной системы синтезируют вещества, которые поддерживают рост, выживание и восстановление нейронов. Такую функцию выполняют различные вещества пептидной природы, подразделяемые на 7 видов (Black, 1999; McKay et al., 1999): 1) классические нейротрофины, например фактор роста нервов, мозговой нейротрофический фактор, 2) нейропоэтины (нейропоэтические цитокины), которые оказывают действие как на нейроны, так и на миелоидные клетки, например лейкоз-ингибирующий фактор, цилиарный нейротрофический фактор, некоторые интерлейкины, 3) пептидные факторы роста, включающие эпидермальный фактор роста, трансформирующие факторы роста а и β, глиальный нейротрофический фактор, активин А, 4) фактор роста фибробластов, 5) инсулиноподобные факторы роста, 6) тромбоцитарные факторы роста, 7) факторы, направляющие рост аксонов, - некоторые из них способны привлекать клетки иммунной системы (Song and Poo, 1999; Spriggs, 1999). Препараты, активирующие синтез и выделение нейротрофинов либо имитирующие их действие, могли бы стать эффективным средством для стимуляции восстановительных процессов.

Рисунок 12.5. Предполагаемое строение белков-переносчиков. Белки - переносчики аминов и аминокислот как пресинаптической мембраны, так и синаптических пузырьков включают 12 трансмембранных доменов (точная ориентация N-концевых остатков не известна). В остальном структура этих двух видов белков-переносчиков несколько отличается.

Центральные медиаторы

Многие препараты, действующие на ЦНС, вмешиваются в медиаторную передачу. Таким образом, для понимания эффектов этих препаратов необходимо знать механизмы действия центральных медиаторов. Согласно гипотезе химической специфичности, или принципу Дейла (Dale, 1935), один нейрон синтезирует один медиатор, который и выделяет во всех своих пресинаптических окончаниях. Однако все больше и больше данных свидетельствует о том, что нейрон может содержать несколько медиаторов (Hokfelt et al., 1995, 2000). Таким образом, принцип Дейла видоизменяется следующим образом: нейрон синтезирует и выделяет один и тот же набор медиаторов во всех своих пресинаптических окончаниях. Но и такое прочтение вряд ли можно считать окончательным. Не ясно, например, вырезается ли из пептида-предшественника только один, одинаковый пептид, предназначенный для всех окончаний нейрона. В табл. 12.1 обобщены свойства наиболее изученных медиаторов ЦНС. Далее медиаторы будут рассмотрены по химическим группам: аминокислоты, амины и пептиды. К другим соединениям, которые участвуют в синаптической передаче, относятся пурины, например аденозин и АТФ (Edwards and Robertson, 1999; Moreau and Huber, 1999; Baraldi et al., 2000), а также NO (Cork et al., 1998) и производные арахидоновой кислоты (Mechoulam et al., 1996; Piomelli et al., 1998).

Аминокислоты

Для ЦНС характерна высокая концентрация некоторых аминокислот - особенно глутамата и ГАМК. Эти простые соединения есть почти во всех структурах мозга, они оказывают немедленное, мощное и кратковременное действие на любой нейрон. Для истинных же медиаторов характерна избирательность - как в распределении, так и в действии. Поэтому медиаторную роль аминокислот признали не сразу. Моноаминодикарбоновые аминокислоты дают сильный возбуждающий эффект, моноаминомонокарбоновые (ГАМК, глицин, β-аланин, таурин) оказывают столь же сильное, но тормозное действие (Kelly and Beart, 1975). Появление избирательных блокаторов открыло возможность для выявления рецепторов аминокислот и обнаружения их подтипов. Последующее картирование рецепторов мечеными лигандами окончательно подтвердило, что ГАМК, глицин и глутамат - центральные медиаторы.

ГАМК

Присутствие ГАМК в ткани мозга было обнаружено в 1950 г. - но ее тормозное действие распознали не сразу. При изучении рецепторов растяжения ракообразных были обнаружены следующие факты: 1) ГАМК оказывает тормозное действие на мышцы, 2) она содержится исключительно в тормозных нервах, 3) экстракт этих нервов оказывает такое же тормозное действие, 4) иной тормозной аминокислоты обнаружено не было, 5) выделение ГАМК коррелирует с частотой стимуляции тормозных нервов, 6) аппликация ГАМК и стимуляция тормозных нервов вызывали одинаковый эффект: повышение хлорной проводимости в мышечном волокне. Эти факты позволили с полным правом причислить ГАМК к медиаторам (подробнее об истории вопроса см. в обзоре Bloom, 1996).

Вскоре было выяснено, что в ЦНС млекопитающих ГАМК оказывает сходные физиологические и фармакологические эффекты. Оказалось, что ГАМК опосредует действие тормозных нейронов локальных контуров головного мозга, а также пресинаптическое торможение в спинном мозге. Тормозные ГАМКергические синапсы есть во многих структурах мозга: их образуют клетки Пуркинье коры мозжечка на нейронах ядра Дейтерса; вставочные нейроны на клетках Пуркинье, обонятельной луковицы, клиновидного ядра продолговатого мозга, гиппокампа, латерального ядра прозрачной перегородки; нейроны вестибулярных ядер на мотонейронах ядра блокового нерва. ГАМК обеспечивает торможение в коре больших полушарий, а также тормозное действие стриатума на черную субстанцию. Таким образом, ГАМК - это главный тормозный медиатор в ЦНС млекопитающих. Локализация ГАМКергических нейронов и распределение их нервных окончаний установлены методами, позволяющими обнаружить глутаматдекарбоксилазу - фермент синтеза ГАМК из глутаминовой кислоты. Иммуноцитохимические методы выявляют сам фермент, флюоресцентная гибридизация in situ - кодирующую его мРНК. Многие ГАМКергические нейроны содержат также один или несколько нейропептидов. Для исследований ГАМКергической передачи используют блокаторы рецепторов ГАМК - бикукуллин и пикротоксин. Избирательными антагонистами ГАМК оказались также многие вещества, провоцирующие судорожную активность, например пенициллин и пентетразол (Macdonald et al., 1992; Macdonald and Olsen, 1994). Пока не ясно, обладают ли терапевтическим действием агонисты ГАМК - стимуляторы рецепторов ГАМК (мусцимол), ингибиторы ее обратного захвата (2,4-диа-миномасляная кислота, нипекотиновая кислота, гувацин) или вещества, влияющие на ее обмен (например, аминооксиуксусная кислота).

Рецепторы ГАМК подразделяют на два типа. Наиболее распространенные ГАМКд-рецепторы относятся к ионотропным: они представляют собой хемочувствительные хлорные каналы, о

Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно - как «ключ к замку») с рецепторами постсинаптической мембраны, что приводит к открыванию ионного канала или к активированию внутриклеточных реакций. Примеры синаптической передачи, рассмотренные выше, полностью соответствуют этой схеме. Вместе с тем благодаря исследованиям последних десятилетий эта довольно простая схема химической синаптической передачи значительно усложнилась. Появление иммунохимических методов позволило показать, что в одном синапсе могут сосуществовать несколько групп медиаторов, а не один, как это предполагали раньше. Например, в одном синаптическом окончании одновременно могут находиться синаптические пузырьки, содержащие ацетилхолин и норадреналин, которые довольно легко идентифицируются на электронных фотографиях (ацетилхолин содержится в прозрачных пузырьках диаметром около 50 нм, а норадреналин - в электронно-плотных диаметром до 200 нм). Кроме классических медиаторов, в синаптическом окончании могут находиться один или несколько ней-ропептидов. Количество веществ, содержащихся в синапсе, может доходить до 5-6 (своеобразный коктейль). Более того, медиаторная специфичность синапса может меняться в онтогенезе. Например, нейроны симпатических ганглиев, иннервирующие потовые железы у млекопитающих, исходно норадренергичны, но у взрослых животных становятся холинергичными.

В настоящее время при классификации медиаторных веществ принято выделять: первичные медиаторы, сопутствующие медиаторы, медиаторы-модуляторы и аллостерические медиаторы. Первичными медиаторами считают те, которые действуют непосредственно на рецепторы постсинаптической мембраны. Сопутствующие медиаторы и медиаторы-модуляторы могут запускать каскад ферментативных реакций, которые, например, фосфорилируют рецептор для первичного медиатора. Аллостерические медиаторы могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.

Долгое время за образец принимали синаптическую передачу по анатомическому адресу (принцип «точка - в точку»). Открытия последних десятилетий, особенно медиаторной функции нейропептидов, показали, что в нервной системе возможен принцип передачи и по химическому адресу. Другими словами, медиатор, выделяющийся из данного окончания, может действовать не только на «свою» постсинаптическую мембрану, но и за пределами данного синапса - на мембраны других нейронов, имеющих соответствующие рецепторы. Таким образом, физиологическая реакция обеспечивается не точным анатомическим контактом, а наличием соответствующего рецептора на клетке-мишени. Собственно этот принцип был давно известен в эндокринологии, а исследования последних лет нашли ему более широкое применение.

Все известные типы хеморецепторов на постсинаптической мембране разделяют на две группы. В одну группу входят рецепторы, в состав которых включен ионный канал, открывающийся при связывании молекул медиатора с «узнающим» центром. Рецепторы второй группы (метаботропные рецепторы) открывают ионный канал опосредованно (через цепочку биохимических реакций), в частности, посредством активации специальных внутриклеточных белков.

Одними из самых распространенных являются медиаторы, принадлежащие к группе биогенных аминов. Эта группа медиаторов достаточно надежно идентифицируется микрогистологическими методами. Известны две группы биогенных аминов: катехоламины (дофамин, норадреналин и адреналин) и индоламин (серотонин). Функции биогенных аминов в организме весьма многообразны: медиаторная, гормональная, регуляция эмбриогенеза.

Основным источником норадренергических аксонов являются нейроны голубого пятна и прилежащих участков среднего мозга (рис. 2.14). Аксоны этих нейронов широко распространяются в мозговом стволе, мозжечке, в больших полушариях. В продолговатом мозге крупное скопление норадренергических нейронов находится в вентролатеральном ядре ретикулярной формации. В промежуточном мозге (гипоталамусе) норадренергические нейроны наряду с дофаминергическими нейронами входят в состав гипоталамо-гипофизарной системы. Норадренергические нейроны в большом количестве содержатся в нервной периферической системе. Их тела лежат в симпатической цепочке и в некоторых интрамуральных ганглиях.

Дофаминергические нейроны у млекопитающих находятся преимущественно в среднем мозге (так называемая нигро-неостриарная система), а также в гипоталамической области. Дофаминовые цепи мозга млекопитающих хорошо изучены. Известны три главные цепи, все они состоят из однонейронной цепочки. Тела нейронов находятся в мозговом стволе и отсылают аксоны в другие области головного мозга (рис. 2.15).

Одна цепь очень проста. Тело нейрона находится в области гипоталамуса и отсылает короткий аксон в гипофиз. Этот путь входит в состав гипоталамо-гипофизарной системы и контролирует систему эндокринных желез.

Вторая дофаминовая система также хорошо изучена. Это черная субстанция, многие клетки которой содержат дофамин. Аксоны этих нейронов проецируются в полосатые тела. Эта система содержит примерно 3/4 дофамина головного мозга. Она имеет решающее значение в регулировании тонических движений. Дефицит дофамина в этой системе приводит к болезни Паркинсона. Известно, что при этом заболевании происходит гибель нейронов черной субстанции. Введение L-DOPA (предшественника дофамина) облегчает у больных некоторые симптомы заболевания.

Третья дофаминергическая система участвует в проявлении шизофрении и некоторых других психических заболеваний. Функции этой системы пока изучены недостаточно, хотя сами пути хорошо известны. Тела нейронов лежат в среднем мозге рядом с черной субстанцией. Они проецируют аксоны в вышележащие структуры мозга, мозговую кору и лимбическую систему, особенно к фронтальной коре, к септальной области и энторинальной коре. Энторинальная кора, в свою очередь, является главным источником проекций к гиппокампу.

Согласно дофаминовой гипотезе шизофрении, третья дофаминергическая система при этом заболевании сверхактивна. Эти представления возникли после открытия веществ, снимающих некоторые симптомы заболевания. Например, хлорпромазин и галоперидол имеют разную химическую природу, но они одинаково подавляют активность дофаминергической системы мозга и проявление некоторые симптомов шизофрении. У больных шизофренией, в течение года получавших эти препараты, появляются двигательные нарушения, получившие название tardive dyskinesia (повторяющиеся причудливые движения лицевой мускулатуры, включая мускулатуру рта, которые больной не может контролировать).

Серотонин почти одновременно открыли в качестве сывороточного сосудосуживающего фактора (1948) и энтерамина, секретируемого энтерохромаффиновыми клетками слизистой оболочки кишечника. В 1951 г. было расшифровано химическое строение серотонина и он получил новое название - 5-гидрокситриптамин. В организме млекопитающих он образуется гидроксилированием аминокислоты триптофана с последующим декарбоксилированием. 90% серотонина образуется в организме энтерохромаффиновыми клетками слизистой оболочки всего пищеварительного тракта. Внутриклеточный серотонин инактивируется моноаминоксидазой, содержащейся в митохондриях. Серотонин внеклеточного пространства окисляется перулоплазмином. Большая часть вырабатываемого серотонина связывается с кровяными пластинками и по кровяному руслу разносится по организму. Другая часть действует в качестве местного гормона, способствуя авторегулированию кишечной перистальтики, а также модулируя эпителиальную секрецию и всасывание в кишечном тракте.

Серотонинергические нейроны широко распространены в центральной нервной системе (рис. 2.16). Они обнаруживаются в составе дорсального и медиального ядер шва продолговатого мозга, а также в среднем мозге и варолиевом мосту. Серотонинергические нейроны иннервируют обширные области мозга, включающие кору больших полушарий, гиппокамп, бледный шар, миндалину, область гипоталамуса. Интерес к серотонину был привлечен в связи с проблемой сна. При разрушении ядер шва животные страдали бессонницей. Сходный эффект оказывали вещества, истощающие хранилище серотонина в мозге.

Самая высокая концентрация серотонина обнаружена в эпифизе (pineal gland). Серотонин в эпифизе превращается в мелатонин, который участвует в пигментации кожи, а также влияет у многих животных на активность женских гонад. Содержание как серотонина, так и мелатонина в эпифизе контролируется циклом свет - темнота через нервную симпатическую систему.

Другую группу медиаторов ЦНС составляют аминокислоты. Уже давно известно, что нервная ткань с ее высоким уровнем метаболизма содержит значительные концентрации целого набора аминокислот (перечислены в порядке убывания): глутаминовой кислоты, глутамина, аспарагиновой кислоты, гамма-аминомасляной кислоты (ГАМК).

Глутамат в нервной ткани образуется преимущественно из глюкозы. У млекопитающих больше всего глутамата содержится в конечном мозге и мозжечке, где его концентрация примерно в 2 раза выше, чем в стволе мозга и спинном мозге. В спинном мозге глутамат распределен неравномерно: в задних рогах он находится в большей концентрации, чем в передних. Глутамат является одним из самых распространенных медиаторов в ЦНС.

Постсинаптические рецепторы к глутамату классифицируются в соответствии с аффинностью (сродством) к трем экзогенным агонистам - квисгулату, каинату и N-метил-D-аспартату (NMDA). Ионные каналы, активируемые квисгулатом и каинатом, подобны каналам, которые управляются никотиновыми рецепторами - они пропускают смесь катионов (Na + и. К +). Стимуляция NMDA-рецепторов имеет сложный характер активации: ионный ток, который переносится не только Na + и К + , но также Са ++ при открывании ионного канала рецептора, зависит от потенциала мембраны. Вольтзависимая природа этого канала определяется разной степенью его блокирования ионами Mg ++ с учетом уровня мембранного потенциала. При потенциале покоя порядка - 75 мВ ионы Mg ++ , которые преимущественно находятся в межклеточной среде, конкурируют с ионами Са ++ и Na + за соответствующие каналы мембраны (рис. 2.17). Вследствие того, что ион Mg ++ не может пройти через пору, канал блокируется всякий раз, как попадает туда ион Mg ++ . Это приводит к уменьшению времени открытого канала и проводимости мембраны. Если мембрану нейрона деполяризовать, то количество ионов Mg ++ , которые закрывают ионный канал, снижается и через канал беспрепятственно могут проходить ионы Са ++ , Na + и. К + . При редких стимуляциях (потенциал покоя изменяется мало) глутаматергического рецептораВПСП возникает преимущественно за счет активации квисгулатных и каинатных рецепторов; вклад NMDA-рецепторов незначителен. При длительной деполяризации мембраны (ритмическая стимуляция) магниевый блок удаляется, и NMDA-каналы начинают проводить ионы Са ++ , Na + и. К + . Ионы Са ++ через вторичные посредники могут потенцировать (усиливать) минПСП, что может привести, например, к длительному увеличению синаптической проводимости, сохраняющейся часами и даже сутками.

Из тормозных медиаторов ГАМК является самой распространенной в ЦНС. Она синтезируется из L-глутаминовой кислоты в одну стадию ферментом декарбоксилазой, наличие которой является лимитирующим фактором этого медиатора. Известно два типа ГАМК-рецепторов на постсинаптической мембране: ГАМКА (открывает каналы для ионов хлора) и ГАМКБ (открывает в зависимости от типа клетки каналы для. К + или Са ++). На рис. 2.18 показана схема ГАМК-рецептора. Интересно, что в его состав входит бензодиазипиновый рецептор, наличием которого объясняют действие так называемых малых (дневных) транквилизаторов (седуксена, тазепама и др.). Прекращение действия медиатора в ГАМК-синапсах происходит по принципу обратного всасывания (молекулы медиатора специальным механизмом поглощаются из синаптической щели в цитоплазму нейрона). Из антагонистов ГАМК хорошо известен бикукулин. Он хорошо проходит через гематоэнцефалический барьер, оказывает сильное воздействие на организм даже в малых дозах, вызывая конвульсии и смерть. ГАМК обнаруживается в ряде нейронов мозжечка (в клетках Пуркинье, клетках Гольджи, корзинчатых клетках), гиппокампа (в корзинчатых клетках), в обонятельной луковице и черной субстанции.

Идентификация ГАМК-цепей мозга трудна, так как ГАМК - обычный участник метаболизма в ряде тканей организма. Метаболическая ГАМК не используется как медиатор, хотя в химическом отношении их молекулы одинаковы. ГАМК определяется по ферменту декарбоксилазы. Метод основан на получении у животных антител к декарбоксилазе (антитела экстрагируют, метят и вводят в мозг, где они связываются с декарбоксилазой).

Другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спинном и продолговатом мозге. Считают, что эти клетки выполняют роль тормозных интернейронов.

Ацетилхолин - один из первых изученных медиаторов. Он чрезвычайно широко распространен в нервной периферической системе. Примером могут служить мотонейроны спинного мозга и нейроны ядер черепных нервов. Как правило, холинергические цепи в мозге определяют по присутствию фермента холинэстеразы. В головном мозге тела холинергических нейронов находятся в ядре перегородки, ядре диагонального пучка (Брока) и базальных ядрах. Нейроанатомы считают, что эти группы нейронов формируют фактически одну популяцию холинергических нейронов: ядро педнего мозга, nucleus basalis (оно расположено в базальной части переднего мозга) (рис. 2.19). Аксоны соответствующих нейронов проецируются к структурам переднего мозга, особенно в новую кору и гиппокамп. Здесь встречаются оба типа ацетилхолиновых рецепторов (мускариновые и никотиновые), хотя считается, что мускариновые рецепторы доминируют в более рострально распоженных мозговых структурах. По данным последних лет складывается впечатление, что ацетилхолиновая система играет большую роль в процессах, связанных с высшими интегративными функциями, которые требуют участия памяти. Например, показано, что в мозге больных, умерших от болезни Альцгеймера, наблюдается массивная утрата холинергических нейронов в nucleus basalis.

Выделение нейромедиаторов пресинаптическими окончаниями нейронов напоминает секрецию эндокринных желёз, выделяющих в кровь свои гормоны. Но гормоны обычно действуют на клетки, находящиеся на удалении от самой железы, тогда как мишенями для нейротрансмиттеров являются лишь постсинаптические нейроны. Поэтому у любого медиатора очень короткий путь до цели, а его действие оказывается быстрым и точным. Точности способствует наличие активных зон – специализированных областей пресинаптической мембраны, где обычно происходит выделение нейротрансмиттера. Если же медиатор выделяется через неспецифические участки мембраны, то точность его действия уменьшается, а само действие замедляется. Такая картина наблюдается, например, в синапсах, образованных между нейронами вегетативной нервной системы и гладкими мышцами.

Но иногда действие медиатора не ограничено только соседней клеткой, и в таких случаях он действует как модулятор с достаточно широким спектром деятельности. А отдельные нейроны выделяют свой продукт в кровь, и тогда он действует уже как нейрогормон. Несмотря на то, что по своей химической природе многие нейромедиаторы существенно отличаются, результат их влияния на постсинаптическую клетку (т.е. возбуждение или торможение) определяется не химической структурой, а типом ионных каналов, которыми медиатор управляет с помощью постсинаптических рецепторов.

Существует несколько критериев, по которым то или иное вещество можно определить как нейромедиатор:

1. Синтез этого вещества происходит в нервных клетках.

2. Синтезированные вещества накапливаются в пресинаптических окончаниях, а после выделения оттуда оказывают специфическое действие на постсинаптический нейрон или эффектор.

3. При искусственном введении этого вещества обнаруживается такой же эффект, как и после выделении его естественным способом.

4. Существует специфический механизм удаления медиатора с места его действия.

Некоторые исследователи считают, что ток кальция в пресинаптическое окончание, приводящий к выделению медиатора, тоже следует рассматривать в качестве одного из критериев, по которым определяют принадлежность вещества к нейромедиаторам. И ещё одним доказательством можно считать возможность блокировать эффект предполагаемого медиатора специально подобранными фармакологическими веществами. Далеко не всегда удаётся экспериментально подтвердить существование сразу всех этих критериев.

В зависимости от химической структуры различают низкомолекулярные и пептидные нейротрансмиттеры (Рис. 6.1).

К низкомолекулярным медиаторам относятся ацетилхолин, биогенные амины, гистамин, аминокислоты и их производные. В списке медиаторов белковой природы значится свыше 50 коротких пептидов. Нейроны, выделяющие определённый медиатор, а также синапсы, в которых он используется и постсинаптические рецепторы для него принято называть …-эргическими, где вместо многоточия ставится название конкретного медиатора: например, ГАМК-эргические нейроны, адренэргические синапсы, холинорецепторы, пептидэргические структуры и т. п.

Вещества, оказывающие на постсинаптические рецепторы такое же действие, как и сам медиатор, называют агонистами, а вещества, связывающиеся с постсинаптическими рецепторами и блокирующие их без присущего медиатору действия, – антагонистами. Эти термины обычно применяются для характеристики каких-либо фармакологических веществ: так, например, введение агонистов приводит к обычной для медиатора или даже усиленной деятельности синапса, а введение антагониста блокирует синапс так, что медиатор не может вызвать привычный для него эффект.

6.2. Синтез нейромедиаторов

Для каждого нейротрансмиттера существуют свои механизмы синтеза. Ацетилхолин, например, образуется с помощью фермента ацетилтрансферазы из ацетилкоэнзима А, встречающегося только в нервных клетках, и холина, захваченного нейроном из крови. Биогенные амины синтезируются из аминокислоты тирозина в следующем порядке: тирозин Þ L-ДОФА (диоксифенилаланин) Þ дофамин Þ норадреналин Þ адреналин, причём каждое преобразование обеспечивается специфическим ферментом. Серотонин получается при ферментативном окислении и декарбоксилировании аминокислоты триптофана.

ГАМК появляется при декарбоксилировании глутаминовой кислоты, а глицин и глутамат представляют собой две из двадцати имеющихся в организме аминокислот, однако, несмотря на их существование почти во всех клетках, в качестве медиаторов эти аминокислоты используются отнюдь не всеми нейронами. Следует различать встречающиеся в самых разных клетках чисто метаболические глицин или глутамат от сберегаемых в синаптических пузырьках – лишь в последнем случае аминокислоты применяются в качестве медиаторов.

Ферменты для синтеза низкомолекулярных нейротрансмиттеров находятся, как правило, в цитоплазме, а синтез происходит на свободных полисомах. Образовавшиеся молекулы медиатора упаковываются в синаптические пузырьки и медленным аксоплазматическим транспортом доставляются в окончание аксона. Но и в самом окончании может происходить синтез низкомолекулярных медиаторов.

Пептидные нейротрансмиттеры образуются только в клеточном теле из молекул белка-предшественника. Их синтез происходит в эндоплазматическом ретикулуме, дальнейшие преобразования – в аппарате Гольджи. Оттуда молекулы медиатора в секреторных пузырьках попадают в нервное окончание с помощью быстрого аксонального транспорта. В синтезе пептидных медиаторов участвуют ферменты – серинпротеазы. Пептиды могут выполнять роль как возбуждающих, так и тормозных медиаторов. Некоторые из них, как, например, гастрин, секретин, ангиотензин, вазопрессин и т. п. раньше были известны как гормоны, действующие вне мозга (в желудочно-кишечном тракте, почках). Однако, если они действуют непосредственно в месте своего выделения, их тоже рассматривают в качестве нейротрансмиттеров.

Для того, чтобы молекулы медиатора попали в синаптическую щель, синаптический пузырёк должен сначала слиться с пресинаптической мембраной в её активной зоне. После этого в пресинаптической мембране образуется увеличивающееся примерно до 50 нм в диаметре отверстие, через которое всё содержимое пузырька опорожняется в щель (Рис. 6.2). Этот процесс называется экзоцитозом. Когда необходимости в выделении медиатора нет, большая часть синаптических пузырьков бывает прикреплена к цитоскелету специальным белком (он называется синапсин), который по своим свойствам напоминает сократительный мышечный белок актин.

Когда нейрон возбуждается и потенциал действия достигает пресинаптического окончания, в нём открываются потенциалзависимые каналы для ионов кальция. Их плотность особенно высока в области активных зон – около 1500/ мкм2. В большинстве нейронов ток ионов кальция в нервное окончание наблюдается и при мембранном потенциале покоя, что обусловлено электрохимическим градиентом. Но во время деполяризации мембраны ток кальция увеличивается, а на вершине пика потенциала действия он становится максимальным и приблизительно через 0,2 мс после этого происходит выделение медиатора.

Роль ионов кальция состоит в том, чтобы преобразовать вызванную возбуждением нейрона деполяризацию в неэлектрическую активность – выделение медиатора. Без входящего тока ионов кальция нейрон фактически лишается своей выходной активности. Кальций нужен для взаимодействия белков мембраны синаптических пузырьков – синаптотагмина и синаптобревина с белками плазматической мембраны аксона – синтаксином и неурексином. В результате взаимодействия этих белков синаптические пузырьки перемещаются к активным зонам и прикрепляются к плазматической мембране. Только после этого начинается экзоцитоз (Рис. 6.3).

Некоторые нейротоксины, например ботулинический, повреждают синаптобревин, что препятствует выделению медиатора – о тяжелых последствиях ботулизма уже говорилось в предыдущей главе. Ещё один нейротоксин – яд пауков рода Latrodectus связывает другой белок -неурексин, что приводит к быстрому опустошению пузырьков с медиатором. После укуса каракурта, одного из представителей этого рода пауков, у человека немеют ноги, его мучает удушье, мышцы живота становятся твёрдыми, как доска, возникает нестерпимая боль в животе и груди, наступает сильное психическое возбуждение, страх смерти, а иногда и сама смерть. Американский родственник каракурта – чёрная вдова (black widow) пользуется тем же ядом, что и каракурт, уступая, впрочем, каракурту в убойной силе.

Небольшое количество медиатора выделяется и без возбуждения нейрона, происходит это малыми порциями – квантами, что было впервые обнаружено в нервно-мышечном синапсе. В результате выделения одного кванта на мембране концевой пластинки возникает миниатюрный подпороговый потенциал величиной около 0,5 – 1 мВ. Выяснено, что для такой деполяризации концевой пластинки в ней надо открыть минимум 2000 каналов, а чтобы открыть столько каналов, необходимо приблизительно 5000 молекул ацетилхолина, следовательно квант представляет собой порцию медиатора, содержащуюся всего лишь в одном синаптическом пузырьке. Для возникновения нормального потенциала концевой пластинки требуется освободить около 150 квантов медиатора, но за очень короткое время – не более 2 мс.

В большинстве синапсов центральной нервной системы после вхождения ионов кальция в пресинаптическое окончание выделяется от 1 до 10 квантов медиатора, поэтому одиночные потенциалы действия практически всегда оказываются подпороговыми. Количество выделяемого медиатора увеличивается, когда к пресинаптическому окончанию поступает серия высокочастотных потенциалов действия. В этом случае растёт и амплитуда постсинаптического потенциала, т. е. происходит временная суммация.

После высокочастотной стимуляции пресинаптического окончания наблюдается повышение эффективности синаптической передачи в течение нескольких минут, а у отдельных нейронов ещё дольше – до часа, когда в ответ на одиночный потенциал действия медитора выделяется больше, чем обычно. Это явление получило название посттетанической потенциации. Объясняется оно тем, что при высокочастотной или тетанической стимуляции растёт концентрация свободного кальция в нервном окончании и им насыщаются буферные системы, прежде всего эндоплазматический ретикулум и митохондрии. В связи с этим активируется специализированный фермент: кальций-кальмодулин-зависимая протеинкиназа. Этот фермент вызывает повышенное отхождение синаптических пузырьков от цитоскелета. Освободившиеся синаптические пузырьки направляются к пресинаптической мембране и сливаются с ней, после этого происходит экзоцитоз.

Повышение эффективности синаптической передачи является одним из механизмов образования памяти, а накопление ионов кальция в пресинаптическом окончании можно рассматривать как один из способов хранения информации о предшествующей высокой активности нейрона.

Представление о рецепторах сформулировал ещё в конце XIX века знаменитый германский учёный Пауль Эрлих (Erlich P.): " Химические субстанции влияют только на те элементы ткани, с которыми они могут связаться. Эта связь должна быть специфичной, т. е. химические группы должны соответствовать друг другу, как ключ и замок". Постсинаптические рецепторы представляют собой трансмембранные белки, у которых наружная часть узнаёт и связывает молекулы медиатора. Вместе с тем, их можно рассматривать ещё и как эффекторы, управляющие открытием и закрытием хемозависимых ионных каналов. Есть два принципиально отличающихся способа управления каналами: ионотропный и метаботропный.

При ионотропном управлении рецептор и канал представляют собой единую макромолекулу. Если к рецептору присоединяется медиатор, то конформация всей молекулы изменяется так, что в центре канала образуется пора и через неё проходят ионы. При метаботропном управлении рецепторы не связаны с каналом напрямую и поэтому присоединение медиатора и открытие канала разделены несколькими промежуточными этапами, в которых участвуют вторичные посредники. Первичным посредником является сам медиатор, который при метаботропном управлении присоединяется к рецептору, действующему на несколько молекул G-белка, который представляет собой длинную извитую аминокислотную цепь, пронизывающие клеточную мембрану семью своими петлями. Известно около дюжины разновидностей G-белков, все они связаны с нуклеотидом гуанозинтрифосфатом (ГТФ). Присоединение нейротрансмиттера к рецептору вызывает сразу в нескольких связанных с ним молекулах G-белка, превращение бедного энергией предшественника – гуанозиндифосфата (ГДФ) в ГТФ.

Такого рода преобразования, обусловленные присоединением остатка фосфорной кислоты, называются фосфорилированием. Вновь образующаяся связь богата энергией, поэтому молекулы G-белка, в которых произошло превращение ГДФ в ГТФ, становятся активированными (Рис. 6.4). Активация белковых молекул может проявляться в изменении их конформации, а у ферментов она обнаруживается в повышении сродства к субстрату, на который действует фермент.

Приобретённая активность у G-белков направлена на стимуляцию или подавление активности (в зависимости от типа G-белка) некоторых ферментов (аденилатциклазы, гуанилатциклазы, фосфолипаз А 2 и С), которые в случае активации вызывают образование вторичных посредников. Конкретный ход дальнейших событий зависит от типа преобразующего сигнал белка. В случае прямого управления ионными каналами активированная молекула G-белка перемещается по внутренней поверхности мембраны к ближайшему ионному каналу и присоединяется к нему, что приводит к открытию этого канала. При непрямом управлении активированный G-белок использует одну из систем вторичных посредников, которые либо управляют ионными каналами, либо изменяют характер метаболизма – обменных процессов в клетке, либо вызывают экспрессию определённых генов, за которой следует синтез новых белков, что, в конечном счёте, тоже приводит к изменению характера обменных процессов. Из вторичных посредников лучше всего изучен циклический аденозинмонофосфат (цАМФ), образование которого осуществляется в несколько этапов (Рис. 6.5).

Активированный G-белок действует на интегральный белок клеточной мембраны – аденилатциклазу, которая является ферментом. Активированная аденилатциклаза вызывает превращение молекул аденозинтрифосфата (АТФ) в циклический аденозинмонофосфат (цАМФ), причём одна молекула аденилатциклазы вызывает образование множества молекул цАМФ. Молекулы цАМФ могут свободно диффундировать в цитоплазме, становясь, таким образом, переносчиками полученного сигнала внутри клетки. Там они находят ферменты – цАМФ-зависимые протеинкиназы и активирует их. Протеинкиназы стимулируют определённые биохимические реакции – характер обменных процессов направленно изменяется.

Следует обратить внимание на усиление слабого синаптического сигнала при такой последовательности событий. Присоединение одной молекулы нейротрансмиттера к рецептору сопровождается активацией нескольких молекул G-белков. Каждая молекула G-белка может активировать несколько молекул аденилатциклазы. Каждая молекула аденилатциклазы вызывает образование множества молекул цАМФ. По такому же принципу, но с участием других типов G-белка активируются другие системы известных вторичных посредников (Рис. 6.6).

Некоторые вторичные посредники могут диффундировать через мембрану клетки и оказывать действие на соседние нейроны, в том числе и на пресинаптический (Рис. 6.7).

Таким, образом, ионотропное управление является непосредственным: лишь только медиатор присоединится к рецептору – открывается ионный канал, причём всё происходит очень быстро, в течение тысячных долей секунды. При метаботропном управлении ответ на присоединение медиатора непрямой, он требует участия преобразующих белков и включает активацию вторичных посредников, а поэтому и появляется значительно позже, чем ионотропный: спустя секунды, а иногда и минуты. Зато при метаботропном управлении обусловленные действием медиатора изменения сохраняются дольше, чем при ионотропном управлении. Ионотропным управлением чаще пользуются низкомолекулярные медиаторы, а нейропептиды чаще активируют системы вторичных посредников, однако эти различия не абсолютны. К ионотропным рецепторам относятся Н-холинорецепторы, один тип рецепторов для ГАМК, два типа рецепторов для глутамата, рецепторы глицина и серотонина. К метаботропным принадлежат рецепторы нейропептидов, М-холинорецепторы, альфа- и бета-адренорецепторы, по одному типу рецепторов для ГАМК, глутамата и серотонина, а также обонятельные рецепторы.

Ещё один вид рецепторов находится не на постсинаптической, а на пресинаптической мембране – это ауторецепторы. Они связаны с G-белком пресинаптической мембраны, их функция состоит в регуляции количества молекул медиатора в синаптической щели. Одни ауторецепторы связываются с медиатором, если его концентрация становится чрезмерной, другие – если недостаточной. После этого меняется интенсивность выделения медиатора из пресинаптического окончания: уменьшается в первом случае и увеличивается – во втором. Ауторецепторы являются важным звеном обратной связи, с помощью которой регулируется стабильность синаптической передачи.

6.5. Удаление медиаторов из синаптической щели

К судьбе выполнившего свою роль в передаче сигнала медиатора применима поговорка: мавр сделал своё дело – мавр должен уйти. Если медиатор останется на постсинаптической мембране, то он помешает передаче новых сигналов. Существует несколько механизмов для устранения использованных молекул медиатора: диффузия, ферментативное расщепление и повторное использование.

Путём диффузии из синаптической щели всегда уходит какая-то часть молекул медиатора, а в некоторых синапсах этот механизм является основным. Ферментативное расщепление представляет собой главный способ удаления ацетилхолина в нервно-мышечном синапсе: этим занимается холинэстераза, прикреплённая по краям складок концевой пластинки. Образующиеся при этом ацетат и холин специальным механизмом захвата возвращаются в пресинаптическое окончание.

Известны два фермента, расщепляющие биогенные амины: моноаминооксидаза (МАО) и катехол-о-метилтрансфераза (КОМТ). Расщепление нейротрансмиттеров белковой природы может происходить под действием внеклеточных пептидаз, хотя обычно такие медиаторы исчезают из синапса медленнее, чем низкомолекулярные, и нередко покидают синапс путём диффузии.

Повторное использование медиаторов основано на специфических для разных нейротрансмиттеров механизмах захвата их молекул как самими нейронами, так и клетками глии, в этом процессе участвуют особые транспортные молекулы. Специфические механизмы повторного использования известны для норадреналина, дофамина, серотонина, глутамата, ГАМК, глицина и холина (но не ацетилхолина). Некоторые психофармакологические вещества блокируют повторное использование медиатора (например, биогенных аминов или ГАМК) и, тем самым, продлевают их действие.

6.6. Отдельные медиаторные системы

Химическая структура важнейших нейромедиаторов представлена на рисунке 6.1.

6.6.1. Ацетилхолин

Образуется с помощью фермента ацетилтрансферазы из ацетилкоэнзима А и холина, который нейроны не синтезируют, а захватывают из синаптической щели или из крови. Это единственный медиатор всех мотонейронов спинного мозга и вегетативных ганглиев, в этих синапсах его действие опосредовано Н-холинорецепторами, а управление каналами прямое, ионотропное. Ацетилхолин выделяется также постганглионарными окончаниями парасимпатического отдела вегетативной нервной системы: здесь он связывается с М-холинорецепторами, т. е. действует метаботропно. В головном мозгу его используют в качестве нейротрансмиттера многочисленные пирамидные клетки коры, действующие на базальные ганглии, например, в хвостатом ядре выделяется примерно 40% от общего количества образующегося в мозгу ацетилхолина. С помощью ацетилхолина миндалины мозга возбуждают клетки коры больших полушарий.

М-холинорецепторы обнаружены во всех отделах мозга (кора, структуры лимбической системы, таламус, ствол), их особенно много в ретикулярной формации. С помощью холинэргических волокон средний мозг связан с другими нейронами верхних отделов ствола, зрительными буграми и корой. Возможно активация именно этих путей обязательна для перехода от сна к бодрствованию, во всяком случае характерные изменения электроэнцефалограммы после приёма ингибиторов холинэстеразы подтверждают такую версию.

При прогрессирующем слабоумии, известном как болезнь Альцгеймера, выявлено снижение активности ацетилтрансферазы в нейронах ядер Мейнерта, расположенных в базальном отделе переднего мозга, непосредственно под полосатым телом. В связи с этим нарушается холинэргическая передача, что рассматривается как важное звено в развитии болезни.

Антагонисты ацетилхолина, как показано в экспериментах на животных, затрудняют образование условных рефлексов и снижают эффективность умственной деятельности. Ингибиторы холинэстеразы приводят к накоплению ацетилхолина, что сопровождается улучшением кратковременной памяти, ускоренным образованием условных рефлексов и лучшим сохранением следов памяти.

Достаточно популярно представление о том, что холинэргические системы мозга крайне необходимы для осуществления его интеллектуальной деятельности и для обеспечения информационного компонента эмоций.

6.6.2. Биогенные амины

Как уже говорилось, биогенные амины синтезируются из тирозина, причём каждый этап синтеза контролирует специальный фермент. Если в клетке есть полный набор таких ферментов, то она будет выделять адреналин и в меньшем количестве его предшественники – норадреналин и дофамин. Например, т.н. хромаффинные клетки мозгового вещества надпочечников выделяют адреналин (80% секреции), норадреналин (18%) и дофамин (2%). Если нет фермента для образования адреналина, то клетка может выделять только норадреналин и дофамин, а если нет и фермента, требующегося для синтеза норадреналина, то единственным выделяемым медиатором будет дофамин, предшественник которого – L-ДОФА в качестве медиатора не используется.

Дофамин, норадреналин и адреналин часто объединяют термином катехоламины. Они управляют метаботропными адренорецепторами, которые есть не только в нервной, но и в других тканях организма. Адренорецепторы подразделяются на альфа -1 и альфа-2, бета-1 и бета-2: физиологические эффекты, вызванные присоединением катехоламинов к разным рецепторам, существенно отличаются. Соотношение разных рецепторов неодинаково у разных клеток-эффекторов. Наряду с адренорецепторами, общими для всех катехоламинов, существуют специфические рецепторы для дофамина, которые обнаружены в центральной нервной системе и в других тканях, например, в гладких мышцах кровеносных сосудов и в сердечной мышце.

Адреналин является главным гормоном мозгового вещества надпочечников, к нему особенно чувствительны бета-рецепторы. Есть сведения и об использовании адреналина некоторыми клетками мозга в качестве медиатора. Норадреналин выделяют постганглионарные нейроны симпатического отдела вегетативной нервной системы, а в центральной нервной системе – отдельные нейроны спинного мозга, мозжечка и коры больших полушарий. Самое большое скопление норадренэргических нейронов представляют собой голубые пятна – ядра мозгового ствола.

Считается, что с активностью этих норадренэргических нейронов связано наступление фазы парадоксального сна, однако только этим их функция не ограничивается. Ростральнее голубых пятен также есть норадренэргические нейроны, чрезмерная активность которых играет ведущую роль в развитии т.н. синдрома паники, сопровождающегося чувством непреодолимого ужаса.

Дофамин синтезируют нейроны среднего мозга и диэнцефальной области, которые образуют три дофаминэргические системы мозга. Это, во-первых, нигростриатная система: она представлена нейронами чёрной субстанции среднего мозга, аксоны которых заканчиваются в хвостатых ядрах и скорлупе. Во-вторых, это мезолимбическая система, сформированная нейронами вентральной покрышки моста, их аксоны иннервируют перегородку, миндалины, часть лобной коры, т. е. структуры лимбической системы мозга. И, в третьих, мезокортикальная система: её нейроны в среднем мозгу, а их аксоны оканчиваются в передней части поясной извилины, глубоких слоях фронтальной коры, энторинальной и пириформной (грушевидной) коре. Наивысшая концентрация дофамина обнаружена в лобной коре.

Дофаминэргические структуры играют видную роль в формировании мотиваций и эмоций, в механизмах удержания внимания и отборе наиболее значимых сигналов, поступающих в центральную нервную систему с периферии. Дегенерация нейронов чёрной субстанции приводит к комплексу двигательных расстройств, который известен как болезнь Паркинсона. Для лечения этой болезни используют предшественник дофамина – L-ДОФА, способный, в отличие от самого дофамина, преодолевать гематоэнцефалический барьер. В некоторых случаях предпринимаются попытки лечить болезнь Паркинсона введением ткани мозгового вещества надпочечников плода в желудочек мозга. Введённые клетки могут сохраняться до года и при этом вырабатывать значительное количество дофамина.

При шизофрении обнаруживается повышенная активность мезолимбической и мезокортикальной систем, что многими рассматривается как один из главных механизмов поражения мозга. В противоположность этому при т.н. большой депрессии приходится применять средства, повышающие концентрацию катехоламинов в синапсах центральной нервной системы. Антидепрессанты помогают многим больным, но, к сожалению, не способны сделать счастливыми здоровых людей, просто переживающих несчастливое время своей жизни.

6.6.3. Серотонин

Этот низкомолекулярный нейромедиатор образуется из аминокислоты триптофана с помощью двух, участвующих в синтезе ферментов. Значительные скопления серотонинэргических нейронов находятся в ядрах шва – тонкой полосе вдоль средней линии каудальной ретикулярной формации. Функция этих нейронов связана с регуляцией уровня внимания и регуляцией цикла сна и бодрствования. Серотонинэргические нейроны взаимодействуют с холинэргическими структурами покрышки моста и норадренэргическими нейронами голубого пятна. Одним из блокаторов серотонинэргических рецепторов является ЛСД, следствием приёма этого психотропного вещества становится беспрепятственный пропуск в сознание таких сенсорных сигналов, которые в норме задерживаются.

6.6.4. Гистамин

Это вещество из группы биогенных аминов синтезируется из аминокислоты гистидина и в самых больших количествах содержится в тучных клетках и базофильных гранулоцитах крови: там гистамин участвует в регуляции различных процессов, в том числе в формировании аллергических реакций немедленного типа. У беспозвоночных это достаточно распространённый медиатор, у человека он используется как нейротрансмиттер в гипоталамусе, где участвует в регуляции эндокринных функций.

6.6.5. Глутамат

Наиболее распространённый возбуждающий нейротрансмиттер головного мозга. Он выделяется аксонами большинства чувствительных нейронов, пирамидными клетками зрительной коры, нейронами ассоциативной коры, образующими проекции на полосатое тело.

Рецепторы для этого медиатора подразделяются на ионотропные и метаботропные. Ионотропные рецепторы глутамата разделяются на два типа, в зависимости от своих агонистов и антагонистов: НМДА (Н-метил-Д-аспартат) и не-НМДА. НМДА рецепторы связаны с катионными каналами, через которые возможен ток ионов натрия, калия и кальция, а каналы не-НМДА рецепторов не пропускают ионы кальция. Входящий через каналы НМДА рецепторов кальций активирует каскад реакций кальций-зависимых вторичных посредников. Считается, что этот механизм играет очень важную роль для формирования следов памяти. Связанные с рецепторами НМДА каналы открываются медленно и только при наличии глицина: они блокируются ионами магния и наркотическим галлюциногеном фенциклидином (который в англоязычной литературе называют "angel dust" – пыльный ангел).

С активацией НМДА рецепторов в гиппокампе связано возникновение очень интересного феномена – долговременной потенциации, особой формы активности нейронов, необходимой для формирования долговременной памяти (См. главу 17). Интересно отметить и тот факт, что чрезмерно высокая концентрация глутамата токсична для нейронов – с этим обстоятельством приходится считаться при некоторых поражениях мозга (кровоизлияния, эпилептические приступы, дегенеративные заболевания, например, хорея Гентингтона).

6.6.6. ГАМК и глицин

Два аминокислотных нейротранмиттера являются важнейшими тормозными медиаторами. Глицин тормозит деятельность интернейронов и мотонейронов спинного мозга. Высокая концентрация ГАМК обнаружена в сером веществе коры мозга, особенно в лобных долях, в подкорковых ядрах (хвостатое ядро и бледный шар), в таламусе, гиппокампе, гипоталамусе, ретикулярной формации. В качестве тормозного медиатора ГАМК используют некоторые нейроны спинного мозга, обонятельного тракта, сетчатки глаза, мозжечка.

Ряд производных от ГАМК соединений (пирацетам, аминолон, оксибутират натрия или ГОМК – гамма-оксимасляная кислота) стимулируют созревание структур мозга и образование стойких связей между популяциями нейронов. Это способствует формированию памяти, что послужило поводом к использованию названных соединений в клинической практике для ускорения восстановительных процессов после различных поражений мозга.

Предполагают, что психотропная активность ГАМК определяется её избирательным влиянием на интегративные функции мозга, которое состоит в оптимизации баланса активности взаимодействующих структур мозга. Так, например, при состояниях страха, фобиях больным помогают специальные антистраховые препараты – бензодиазепины, действие которых состоит в повышении чувствительности ГАМК-эргических рецепторов.

6.6.7. Нейропептиды

В настоящее время около 50 пептидов рассматриваются в качестве возможных нейротрансмиттеров, некоторые из них были известны прежде как нейрогормоны, выделяющиеся нейронами, но действующие вне мозга: вазопрессин, окситоцин. Другие нейропептиды были изучены впервые в качестве местных гормонов пищеварительного тракта, например, гастрин, холецистокинин и т. д., а также гормонов, образующихся в других тканях: ангиотензин, брадикинин и т. д.

Их существование в прежнем качестве по-прежнему не подвергается сомнению, но когда удаётся установить, что тот или иной пептид выделяется нервным окончанием и действует на соседний нейрон, его по справедливости относят и к нейротрансмиттерам. В мозгу значительное количество нейропептидов используется в гипоталамо-гипофизарной системе, хотя не менее хорошо известна, например, функция пептидов в передаче болевой чувствительности в задних рогах спинного мозга.

Все пептиды происходят из больших молекул-предшественниц, которые синтезируются в клеточном теле, изменяются в цитоплазматическом ретикулуме, преобразуются в аппарате Гольджи и доставляются в нервное окончание быстрым аксонным транспортом в секреторных пузырьках. Нейропептиды могут действовать как возбуждающие и как тормозные медиаторы. Часто они ведут себя как нейромодуляторы, т. е. не сами передают сигнал, а в зависимости от необходимости увеличивают или уменьшают чувствительность отдельных нейронов или их популяций к действию возбуждающих или тормозных нейротрансмиттеров.

По одинаковым участкам аминокислотной цепи можно обнаружить сходство между отдельными нейропептидами. Так, например, все эндогенные опиатные пептиды на одном конце цепи имеют одинаковую последовательность аминокислот: тирозин-глицин-глицин-фенилаланин. Именно этот участок является активным центром молекулы пептида. Нередко обнаружение подобного сходства между отдельными пептидами указывает на их генетическое родство. В соответствии с таким родством выделено несколько главных семейств нейроактивных пептидов:

1.Опиатные пептиды: лейцин-энкефалин, метионин-энкефалин, альфа-эндорфин, гамма-эндорфин, бета-эндорфин, дайнорфин, альфа-неоэндорфин.

2. Пептиды нейрогипофиза: вазопрессин, окситоцин, нейрофизин.

3. Тахикинины: вещество Р, бомбезин, физалемин, кассинин, уперолеин, эледоизин, вещество К.

4. Секретины: секретин, глюкагон, ВИП (вазоактивный интестинальный пептид), рилизинг-фактор соматотропина.

5. Инсулины: инсулин, инсулиноподобные ростковые факторы I и II.

6. Соматостатины: соматостатин, полипептид поджелудочной железы.

7. Гастрины: гастрин, холецистокинин.

Некоторые нейроны могут одновременно выделять пептидный и низкомолекулярный медиаторы, например, ацетилхолин и ВИП, причём оба действуют на одну и ту же мишень как синергисты. Но может быть и по-другому, как, например, в гипоталамусе, где выделяемые одним нейроном глутамат и дайнорфин действуют на одну постсинаптическую мишень, но глутамат возбуждает, а опиоидный пептид – ингибирует. Скорее всего пептиды в таких случаях действуют как нейромодуляторы. Иногда вместе с нейротрансмиттером выделяется ещё и АТФ, которая в некоторых синапсах тоже рассматривается в качестве медиатора, если, конечно, удаётся доказать наличие рецепторов для неё на постсинаптической мембране.

6.7. Опиатные пептиды

Семейство опиатных пептидов насчитывает свыше десятка веществ, молекулы которых включают от 5 до 31 аминокислот. У этих веществ есть общие биохимические особенности, хотя пути их синтеза могут отличаться. Например, синтез бета-эндорфина связан с образованием адренокортикотропного гормона (АКТГ) из общей крупной молекулы белка-предшественника – проопиомеланокортина, тогда как энкефалины образуются из другого предшественника, а дайнорфин – из третьего.

Поиск опиатных пептидов начался после обнаружения в мозгу опиатных рецепторов, связывающих алкалоиды опиума (морфин, героин и т. п.). Поскольку трудно представить появление таких рецепторов для связывания лишь посторонних веществ, их начали искать внутри организма. В 1975 году в журнале "Nature" появилось сообщение об открытии двух малых пептидов, которые состояли из пяти аминокислот, связывались с опиатными рецепторами и действовали сильнее, чем морфин. Авторы этого сообщения (Hughes J., Smith T.W., Kosterlitz H.W. и др.) назвали обнаруженные вещества энкефалинами (т.е. в голове). Через короткое время из гипоталамо-гипофизарного экстракта выделили ещё три пептида, которые назвали эндорфинами, т. е. эндогенными морфинами, затем был обнаружен дайнорфин и т. д.

Все опиатные пептиды иногда называют эндорфинами. Они связываются с опиатными рецепторами лучше, чем морфин, и действуют в 20-700 раз сильнее его. Описано пять функциональных типов опиатных рецепторов, вместе с самими пептидами они образуют весьма сложную систему. Присоединение пептида к рецептору приводит к образованию вторичных посредников, относящихся к системе цАМФ.

Самое высокое содержание опиоидных пептидов обнаружено в гипофизе, однако синтезируются они преимущественно в гипоталамусе. Значительное количество бета-эндорфина встречается в лимбической системе мозга, обнаруживается он и в крови. Концентрация энкефалинов особенно высока в задних рогах спинного мозга, где происходит передача сигналов от болевых окончаний: там энкефалины уменьшают выделение вещества Р – медиатора передачи информации о боли.

У экспериментальных животных можно вызвать обезболивание путём микроинъекции бета-эндорфина в желудочек мозга. Другой способ обезболивания состоит в электростимуляции нейронов, расположенных вокруг желудочка: при этом повышается концентрация эндорфинов и энкефалинов в ликворе. К такому же результату, т. е. к обезболиванию, приводило и введение b-эндорфинов, и стимуляция перивентрикулярной (околожелудочковой) области у онкологических больных. Интересно, что уровень опиатных пептидов повышается в ликворе и при обезболивании с помощью акупунктуры, и при эффекте плацебо (когда больной принимает лекарство, не зная, что в нём нет активного действующего начала).

Помимо аналгезирующего, т. е. обезболивающего действия опиоидные пептиды влияют на образование долговременной памяти, процесс научения, регулируют аппетит, половые функции и сексуальное поведение, они являются важным звеном стресс-реакции и процесса адаптации, они обеспечивают связь между нервной, эндокринной и иммунной системами (опиатные рецепторы обнаружены у лимфоцитов и моноцитов крови).

Резюме

В центральной нервной системе для передачи информации между клетками используются как низкомолекулярные, так и пептидные нейротрансмиттеры. Разные популяции нейронов используют различные медиаторы, этот выбор определён генетически и обеспечен определённым набором ферментов, необходимых для синтеза. Для одного и того же медиатора у разных клеток есть различные типы постсинаптических рецепторов, с ионотропным или метаботропным управлением. Метаботропное управление осуществляется при участии преобразующих белков и различных систем вторичных посредников. Некоторые нейроны выделяют одновременно с низкомолекулярным ещё и пептидный медиатор. Отличающиеся выделяемым медиатором нейроны в определённом порядке сосредоточены в разных структурах мозга.

Вопросы для самоконтроля

81. Что из перечисленного ниже не является критерием для отнесения вещества к нейромедиаторам?

А. Синтезируется в нейроне; Б. Накапливается в пресинаптическом окончании; В. Оказывает специфическое действие на эффектор; Г. Выделяется в кровь; Д. При искусственном введении наблюдается эффект, аналогичный тому, что бывает при естественном выделении.

А. Препятствует освобождению медиатора из пресинаптического окончания; Б. Действует подобно медиатору; В. Действует иначе, чем медиатор; Г. Блокирует постсинаптические рецепторы; Д. Не связывается с постсинаптическими рецепторами.

83. Что из перечисленного ниже характерно для пептидных нейротрансмиттеров?

А. Образуются при ферментативном окислении аминокислот; Б. Образуются в результате декарбоксилирования аминокислот; В. Могут синтезироваться в пресинаптическом окончании; Г. Доставляются в пресинаптическое окончание медленным аксоплазматическим транспортом; Д. Образуются в клеточном теле нейрона.

84. Что вызывает ток ионов кальция в пресинаптическое окончание во время передачи информации через синапс?

А. Потенциал действия; Б. Потенциал покоя; В. Экзоцитоз; Г. Связь синаптических пузырьков с цитоскелетом; Д. Возникновение постсинаптического потенциала.

85. Что преобразует возбуждение пресинаптического окончания в неэлектрическую активность (выделение нейромедиатора)?

А. Экзоцитоз; Б. Входящий ток ионов кальция; В. Вход ионов натрия при возбуждении окончания; Г. Выход ионов калия во время реполяризации; Д. Повышение активности ферментов, необходимых для синтеза медиатора.

86. Чем обусловлена посттетаническая потенциация?

А. Суммацией квантов медиатора; Б. Повышением скорости диффузии медиатора; В. Повышением концентрации ионов кальция в пресинаптическом окончании; Г. Повышением активности ферментов для синтеза медиатора; Д. Высокой плотностью каналов для кальция в области активных зон.

87. Какое из перечисленных ниже событий приводит к активации G-белков?

А. Превращение ГДФ в ГТФ; Б. Превращение АТФ в цАМФ; В. Активация аденилатциклазы; Г. Активация протеинкиназы; Д. Образование постсинаптического потенциала.

88. Какое из указанных событий должно произойти раньше других при метаботропном управлении?

А. Образование цАМФ; Б. Активация протеинкиназы; В. Активация аденилатциклазы; Г. Активация G-белка; Д. Открытие ионного канала.

89. Какую функцию выполняют ауторецепторы пресинаптической мембраны?

А. Осуществление обратного транспорта нейротрансмиттеров; Б. Регуляция количества медиатора в синаптической щели; В. Включение механизмов расщепления медиатора; Г. Ионотропное управление каналами пресинаптической мембраны; Д. Связывание медиатора, выделяющегося из постсинаптического нейрона.

90. Какой из указанных механизмов не используется для удаления медиаторов из синаптической щели?

А. Ферментативное расщепление; Б. Захват молекул медиатора клетками глии; В. Захват молекул медиатора постсинаптическим нейроном; Г. Транспорт молекул медиатора в окончание пресинаптического нейрона; Д. диффузия.

91. При прогрессирующем слабоумии (болезни Альцгеймера) нарушен синтез одного из нейромедиаторов. Это:

А. Ацетилхолин; Б. Глутамат; В. Дофамин; Г. Норадреналин; Д. ГАМК.

92. Какой медиатор выделяют нейроны голубого пятна?

А. Дофамин; Б. Глицин; В. Глутамат; Г. Норадреналин; Д. Адреналин.

93. Какой медиатор синтезируется в нейронах чёрной субстанции среднего мозга?

А. Дофамин; Б. Норадреналин; В. Ацетилхолин; Г. b-Эндорфин; Д. Глутамат.

94. В какой из перечисленных ниже структур мозга обнаружена самая высокая концентрация дофамина?

А. Ретикулярная формация; Б. Затылочная кора; В. Лобная кора; Г. Мозжечок; Д. Таламус.

95. Какой медиатор выделяют нейроны ядер шва?

А. Дофамин; Б. Норадреналин; В. Серотонин; Г. Гистамин; Д. Глицин.

96. Какой медиатор действует на НМДА-рецепторы?

А. Ацетилхолин; Б. Глутамат; В. Глицин; Г. Энкефалин; Д. Адреналин.

97. Для ускорения восстановительных процессов и улучшения памяти после повреждений мозга используют производные одного из нейротрансмиттеров. Укажите его.

А. ГАМК; Б. Глицин; В. Ацетилхолин; Г. Глутамат; Д. Дофамин.

98. Какое из перечисленных ниже веществ не является пептидным нейротрансмиттером?

А. Эндорфин; Б. Глицин; В. Вещество Р; Г. Соматостатин; Д. Энкефалин.

99. Какой медиатор синтезируется некоторыми нейронами головного мозга и оказывает влияние на передачу информации о болевых стимулах в спинном мозгу?

А. Эндорфин; Б. Энкефалин; В. Вещество Р. Г. Окситоцин; Д. Вазопрессин.

100. В какой области мозга в качестве медиаторов особенно часто используются пептидные нейротрансмиттеры?

А. Мозжечок; Б. Ретикулярная формация; В. Гипоталамус и гипофиз; Г. Лобная кора; Д. Подкорковые ядра.

Медиаторами, или нейротрансмиттерами, нейронов ЦНС являются различные биологически активные вещества. В зависимости от химической природы их можно разделить на 4 группы: 1) амины (ацетилхолин, норадреналин, дофамин, серотонин), 2) аминокислоты (глицин, глутаминовая, аспарагиновая, гамма-аминомасляная - ГАМК), 3) пуриновые и нуклеотиды (АТФ); 4) нейропептиды (вещество Р, вазопрессин, опоидни пептиды и др.).
Раньше считали, что во всех окончаниях одного нейрона "выделяется один медиатор (по принципу Дейла). За последние годы выяснили, что во многих нейронах может содержаться 2 медиаторы или больше.
По действию медиаторы можно разделить на ионотропных и метаболотропни. Ионотропных медиаторы после взаимодействия с циторецепторамы постсинаптической мембраны изменяют проницаемость ионных каналов. Метаболотропни медиаторы постсинаптическую действие проявляют путем активации специфических ферментов мембраны. Вследствие этого в мембране или (чаще) в цитоплазме клетки активируются так называемые вторичные посредники (вторичные мессенджеры), которые в свою очередь запускают каскады внутриклеточных процессов, тем самым влияя на функции клеток.
К основным мессенджеров систем внутриклеточной сигнализации относят аденилатциклазной и полифосфоинозитидну. В основе первой лежит аденилатциклазной механизм. Центральным звеном второй системы является кальциймобилизуючий каскад полифосфоинозитидив, который контролируется фосфолипазой С. Физиологический эффект этих систем осуществляется путем активации специфических ферментов - протеинфосфокиназ, конечным итогом чего является широкий спектр воздействия на белковые субстраты, которые могут подвергаться фосфорилированию. Вследствие этого изменяется проницаемость мембран для ионов, синтезируются и выделяются медиаторы, регулируется синтез белков, осуществляется энергетический обмен и т.д.. Метаболотропним эффектом обладают большинство нейропептидов. Метаболические изменения, происходящие в клетке или на ее мембране под действием метаболотропних медиаторов, длительные, чем при действии ионотропных медиаторов. Они могут затрагивать даже геном клетки.
По функциональным свойствам медиаторы ЦНС делятся на возбуждающие, тормозные и модулирующие. Возбуждающими медиаторами могут быть различные вещества, которые вызывают деполяризацию постсинаптической мембраны. Важнейшее значение имеют производные глутаминовой кислоты (глутамата), субстанция Р. Некоторые центральные нейроны имеют холинорецепторы, т.е. содержат на постсинаптической мембране рецепторы, которые реагируют с холинового соединениями, например, ацетилхолин в клетках Реншоу.. возбуждающими медиаторами могут быть также моноамины (норадреналин, дофамин, серотонин). € основания считать, что тип медиатора, который образуется в синапсе, обусловлен не только свойствами окончания, но и общим направлением биохимических процессов во всем нейроне.
Природа тормозного медиатора до конца не установлена. Полагают, что в синапсах различных нервных структур эту функцию могут выполнять аминокислоты - глицин и ГАМК.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.