Что общего между излучением Хокинга и эффектом Унру? Излучение Хокинга: тайн больше не существует Что такое излучение Хокинга

Величайший космолог и физик-теоретик нашего времени. Родившийся в 1942 году, будущий ученый уже в 20 лет начал испытывать проблемы со здоровьем. Боковой амиотрофический склероз сильно затруднял обучение на факультете теоретической физики Оксфорда, однако не мешал Стивену вести весьма активный, наполненный событиями образ жизни. Он женился в 1965, стал членом Лондонского Королевского общества в 1974. К этому времени у него уже родились дочь и два сына. В 1985 году ученый перестал говорить. Сегодня в его организме подвижность сохранила только одна на щеке. Казалось, что полностью неподвижный и приговорен. Однако в 1995 он снова женится, а в 2007… совершает полет в невесомости.

На Земле нет человека, лишенного подвижности, который жил бы настолько наполненной, полезной и интересной жизнью.

Но и это еще не все. Величайшей разработкой Хокинга стала теория Черных дыр. «Теория Хокинга», как ее теперь называют, кардинально изменила многолетние представления ученых о Черных дырах Вселенной.

В начале работы над теорией ученый, как и многие его коллеги, утверждал, навсегда уничтожается все, что попадает в них. Этот информационный парадокс не давал покоя военным и ученым всего мира. Считалось, что никаких свойств этих космических объектов, за исключением массы, установить невозможно.

Занявшись изучением Черных дыр в 1975 году, Хокинг установил, что они постоянно излучают в космос поток фотонов и некоторых других элементарных частиц. Однако даже сам ученый был уверен, что «излучение Хокинга» носит случайный, непредсказуемый характер. Ученый британец сначала думал, что это излучение не несет никакой информации.

Однако свойство гениального ума - умение постоянно сомневаться. Хокинг продолжил исследования и обнаружил, что испарение Черной Дыры (т.е. излучение Хокинга) носит квантовый характер. Это позволило ему сделать вывод, что информация, попавшая в Черную дыру, не разрушается, а изменяется. Теория о том, что состояние дыры постоянно, верно, если рассматривать его с точки зрения неквантовой физики.

С учетом квантовой теории, вакуум наполнен «виртуальными» частицами, которые излучают разные физические поля. Сила излучения меняется постоянно. Когда она становится очень сильной, непосредственно из вакуума на горизонте событий (границе) Черной дыры могут родиться пары частица-античастица. Если полная энергия одной частицы оказывается положительной, а второй - отрицательной, если при этом частицы упали в Черную дыру, то они начинают вести себя по-разному. Отрицательная античастица начинает уменьшать энергию покоя Черной дыры, а положительная частица стремится в бесконечность.

Со стороны этот процесс выглядит как испарение, идущее из Черной дыры. Именно и носит название «излучение Хокинга». Ученый установил, что это «испарение» искаженной информации имеет собственный тепловой, видимый приборами, спектр, определенную температуру.

Излучение Хокинга, по мнению самого ученого, свидетельствует о том, что не вся информация теряется и навсегда исчезает в Черной дыре. Он уверен, что квантовая физика доказывает невозможность полного уничтожения или потери информации. А это значит, что такую информацию, пусть в измененном виде, содержит излучение Хокинга.

Если ученый прав, то прошлое и будущее Черных дыр можно исследовать так же, как историю других планет.

К сожалению, мнение о возможности путешествия через время или в другие вселенные при помощи Черных дыр. Наличие излучения Хокинга доказывает, что любой объект, упавший в дыру, вернется в нашу Вселенную в виде измененной информации.

Не все ученые разделяют убеждения британского физика. Однако оспаривать их они тоже не решаются. Сегодня весь мир ждет новых публикаций Хокинга, в которых он обещал подробно и доказательно подтвердить объективность своей перевернувшей научный мир теории.

Тем более что ученым удалось получить излучение Хокинга в лабораторных условиях. Это произошло в 2010 г.

Следуя общей теории относительности, существование черных дыр подразумевает простой факт: как только любой объект попадает за горизонт событий, в сердце черной дыры, возврата уже нет. Гравитационная сила этих областей настолько велика, что даже свет — самое быстрое явление во Вселенной — не может развить скорость, необходимую для преодоления притяжения. Следовательно, черные дыры не порождают и электромагнитное излучение. Однако в 1974 году молодой Стивен Хокинг предположил, что какое-то излучение все-таки существует. Звучит парадоксально? Все дело в квантовой механике.

Излучение Хокинга

Это теоретическое излучение получило название «излучение Хокинга». Грубо — очень грубо — можно сказать, что оно возникает как излучение в результате температуры самой черной дыры, которая обратно пропорциональна ее массе. Если его удастся обнаружить — то это будет значить, что черные дыры рассеиваются, пусть и чрезвычайно медленно. Однако, согласно математическим расчетам, это излучение слишком слабое, чтобы его могли зарегистрировать современные приборы.

Что можно сделать? Попытаться воссоздать в лаборатории имитацию черной дыры. Не волнуйтесь, это не вызовет схлопывания пространства: ученые могут имитировать такие явления с помощью жидкости и звуковых волн внутри специальных резервуаров, из конденсатов Бозе-Эйнштейна или из света внутри оптоволокна. Физик Ульф Леонхардт на страницах журнала Physics World поясняет, что «излучение Хокинга встречается гораздо чаще, чем мы предполагали. Вероятно, оно возникает всякий раз, когда создается горизонт событий — будь то астрофизика или свет в оптических материалах, волны жидкости и даже ультрахолодные атомы».

Очевидно, что на нашей планете невозможно создать такую же мощную гравитацию, как внутри черных дыр (и спасибо за это). При этом математические измерения аналогичны той математике, что описывает черные дыры в общей теории относительности. В качестве итогового экспериментального метода команда исследователей выбрала оптоволоконную систему, разработанную Леонхардтом несколько лет назад.

Как это работает

Внутри оптического волокна существуют микроскопические узоры, играющие роль своеобразного канала. Когда свет входит в волокно, то он слегка замедляется. Для создания аналога горизонта событий по волокну пускают два очень быстрых импульса лазерного излучения разных цветов. Первый мешает второму, в результате чего и возникает эффект горизонта событий, наблюдаемый как изменение показателя преломления волокна.

Осуществив это, команда использовала дополнительное световое излучение, что привело к увеличению интенсивности излучения с отрицательной частотой. Говоря проще, «негативный» свет черпал энергию прямо из горизонтов событий — признак, который говорит об успешной симуляции излучения Хокинга.

Доказали или все-таки нет?

Несмотря на то, что результат был успешным, конечной частью исследования является излучение не вынужденного, а спонтанного излучения Хокинга. Вынужденное — как в случае этого эксперимента — требует внешнего электромагнитного воздействия, в то время как излучение Хокинга, исходящее от черной дыры, будет спонтанным, то есть без стимуляции извне.

Другое важное обстоятельство заключается в том, что невозможно в точности воссоздать в лабораторной среде условия вблизи горизонта событий. К примеру, в данном случае нельзя быть на 100% уверенным, что излучение не было создано в результате самого эксперимента, хотя ученые и уверены в обратном.

В любом случае, у команды появилась еще одна загадка — оказалось, что полученный результат не совпадает с тем, что ожидали исследователи. «На бумаге наши расчеты показывают, что излучение Хокинга должно быть более сильным чем то, что мы наблюдали в итоге», отметил Леонхардт.

Существует явление, которое отражает столь разные феномены, как черные дыры и элементарные частицы, в их взаимодействии. Это излучение Хокинга или квантово...

От Masterweb

26.06.2018 18:00

Черные дыры и элементарные частицы. Современная физика увязывает вместе понятия об этих объектах, первые из которых описываются в рамках эйнштейновской теории гравитации, а вторые – в математических конструкциях квантовой теории поля. Известно, что две эти красивые и многократно подтвержденные экспериментально теории не очень "дружат" между собой. Однако существует явление, которое отражает столь разные феномены в их взаимодействии. Это излучение Хокинга или квантовое испарение черных дыр. Что это такое? Как оно работает? Может ли быть обнаружено? Об этом мы поговорим в нашей статье.

Черные дыры и их горизонты

Представим себе некоторую область пространственно-временного континуума, занятую физическим телом, например, звездой. Если эта область характеризуется таким соотношением радиуса и массы, при котором гравитационное искривление континуума не позволяет чему бы то ни было (даже световому лучу) покинуть ее, такая область называется черной дырой. В некотором смысле это действительно дыра, провал в континууме, как его часто изображают на иллюстрациях, используя двумерное представление пространства.

Однако нас в данном случае будет интересовать не зияющая глубина этого провала, а граница черной дыры, называемая горизонтом событий. В рамках рассмотрения вопроса об излучении Хокинга важной особенностью горизонта является то, что пересечение этой поверхности навсегда и полностью отделяет любой физический объект от внешнего пространства.

О вакууме и виртуальных частицах

В понимании квантовой теории поля вакуум – это вовсе не пустота, а особая среда (точнее, состояние материи), то есть поле, все квантовые параметры которого равны нулю. Энергия такого поля минимальна, однако не следует забывать о принципе неопределенности. В полном соответствии с ним вакуум проявляет спонтанную флуктуационную активность. Выражается она в энергетических колебаниях, что отнюдь не нарушает закона сохранения.

Чем выше пик энергетической флуктуации вакуума, тем короче ее длительность. Если подобное колебание будет иметь энергию 2mc2, достаточную для рождения пары частиц, они возникнут, но немедленно аннигилируют, не успев разлететься. Тем самым они погасят флуктуацию. Такие виртуальные частицы рождаются за счет энергии вакуума и возвращают ему эту энергию при своей гибели. Их существование подтверждено экспериментально, например, при регистрации знаменитого эффекта Казимира, демонстрирующего давление газа виртуальных частиц на макрообъект.


Для понимания излучения Хокинга важно, что частицы в подобном процессе (будь то электроны с позитронами или фотоны) рождаются обязательно парами, а их суммарный импульс равен нулю.

Вооружившись флуктуациями вакуума в форме виртуальных пар, мы приблизимся к границе черной дыры и посмотрим, что же там происходит.

У края пропасти

Благодаря наличию горизонта событий черная дыра способна вмешаться в процесс спонтанных вакуумных колебаний. Приливные силы у поверхности дыры огромны, гравитационное поле здесь крайне неоднородно. Оно усиливает динамику этого явления. Пары частиц должны рождаться гораздо активнее, чем в отсутствие внешних сил. На этот процесс черная дыра затрачивает свою гравитационную энергию.

Ничто не запрещает одной из частиц «нырнуть» под горизонт событий, если ее импульс направлен соответствующим образом и рождение пары произошло практически у самого горизонта (при этом дыра тратит энергию на разрыв пары). Тогда никакой аннигиляции уже не будет, а партнер шустрой частицы улетит от черной дыры. В результате уменьшается энергия, значит, и масса дыры на величину, равную массе беглеца. Это «похудение» получило название испарения черной дыры.


При описании излучения черных дыр Хокинг оперировал именно виртуальными частицами. В этом состоит отличие его теории от точки зрения Грибова, Зельдовича и Старобинского, высказанной в 1973 году. Советские физики указывали тогда на возможность квантового туннелирования реальных частиц через горизонт событий, вследствие чего черная дыра должна обладать излучением.

Что такое излучение Хокинга

Черные дыры, согласно теории ученого, ничего сами не излучают. Однако фотоны, покидающие черную дыру, имеют тепловой спектр. Для наблюдателя этот «исход» частиц должен выглядеть так, словно дыра, подобно любому нагретому телу, испускает некое излучение, естественно, теряя при этом энергию. Можно даже рассчитать температуру, сопоставляемую излучению Хокинга, по формуле ТЧД=(h∙c3)/(16п2∙k∙G∙M), где h – постоянная Планка (не приведенная!), c – скорость света, k – постоянная Больцмана, G – гравитационная постоянная, М – масса черной дыры. Приблизительно эта температура будет равна 6,169∙10-8 К∙(М0/М), где М0 – масса Солнца. Получается, чем массивнее черная дыра, тем ниже соответствующая излучению температура.

Но черная дыра – это не звезда. Теряя энергию, она не остывает. Наоборот! С уменьшением массы дыра становится все «горячее». Потеря массы означает и уменьшение радиуса. В итоге испарение идет с нарастающей интенсивностью. Отсюда следует, что маленькие дыры должны завершать свое испарение взрывом. Правда, пока само существование таких микродыр остается гипотетичным.

Есть альтернативное описание хокинговского процесса, основанное на эффекте Унру (тоже гипотетическом), предсказывающем регистрацию теплового излучения ускоряющимся наблюдателем. Если он будет связан с инерциальной системой отсчета, то никакого излучения не обнаружит. Вакуум вокруг ускоренно коллапсирующего объекта для наблюдателя также будет заполнен излучением с тепловыми характеристиками.


Проблема информации

Неприятности, которые создала теория излучения Хокинга, связаны с, так называемой, «теоремой отсутствия волос» у черной дыры. Суть ее вкратце в следующем: дыре совершенно безразлично, какими характеристиками обладал тот объект, который попал за горизонт событий. Важна лишь масса, на которую увеличилась дыра. Информация о параметрах тела, упавшего в нее, сохраняется внутри, хотя и недоступна наблюдателю. А теория Хокинга сообщает нам, что черные дыры, оказывается, не вечны. Получается, информация, которая так и хранилась бы в них, вместе с дырами и исчезает. Для физиков это ситуация нехорошая, поскольку приводит к совершенно бессмысленным вероятностям отдельных процессов.

В последнее время наметились положительные сдвиги в решении данного парадокса, включая и участие самого Хокинга. В 2015 году было заявлено, что благодаря особым свойствам вакуума возможно выявить бесконечное количество параметров излучения дыры, то есть «вытащить» из нее информацию.

Проблема регистрации

Трудность разрешения подобных парадоксов усугубляется тем, что излучение Хокинга не представляется возможным зарегистрировать. Взглянем еще раз на формулу, приведенную выше. Она показывает, насколько холодны черные дыры – стомиллионные доли Кельвина для дыр солнечной массы и трехкилометрового радиуса! Существование их весьма сомнительно.


Есть, правда, надежда на микроскопические (горячие, реликтовые) черные дыры. Но до сих никто не наблюдал этих теоретически предсказанных свидетелей самых ранних эпох Вселенной.

Напоследок нужно внести немного оптимизма. В 2016 году появилось сообщение об обнаружении аналога квантового излучения Хокинга на акустической модели горизонта событий. Аналогия тоже основана на эффекте Унру. Хотя она имеет ограниченную сферу применимости, например, не позволяет изучать исчезновение информации, однако есть надежда, что такие исследования помогут в создании новой теории черных дыр, учитывающей квантовые явления.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.